Bacterial nanotubes as a manifestation of cell death
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33009406
PubMed Central
PMC7532143
DOI
10.1038/s41467-020-18800-2
PII: 10.1038/s41467-020-18800-2
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis cytologie genetika metabolismus ultrastruktura MeSH
- DNA bakterií genetika MeSH
- konjugace genetická MeSH
- mikrobiální viabilita * MeSH
- nanotrubičky chemie MeSH
- plazmidy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
Bacterial nanotubes are membranous structures that have been reported to function as conduits between cells to exchange DNA, proteins, and nutrients. Here, we investigate the morphology and formation of bacterial nanotubes using Bacillus subtilis. We show that nanotube formation is associated with stress conditions, and is highly sensitive to the cells' genetic background, growth phase, and sample preparation methods. Remarkably, nanotubes appear to be extruded exclusively from dying cells, likely as a result of biophysical forces. Their emergence is extremely fast, occurring within seconds by cannibalizing the cell membrane. Subsequent experiments reveal that cell-to-cell transfer of non-conjugative plasmids depends strictly on the competence system of the cell, and not on nanotube formation. Our study thus supports the notion that bacterial nanotubes are a post mortem phenomenon involved in cell disintegration, and are unlikely to be involved in cytoplasmic content exchange between live cells.
Zobrazit více v PubMed
Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell. 2011;144:590–600. doi: 10.1016/j.cell.2011.01.015. PubMed DOI
Pande S, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 2015;6:6238. doi: 10.1038/ncomms7238. PubMed DOI
Barchinger SE, et al. Regulation of gene expression in Shewanella oneidensis MR-1 during electron acceptor limitation and bacterial nanowire formation. Appl. Environ. Microbiol. 2016;82:5428–5443. doi: 10.1128/AEM.01615-16. PubMed DOI PMC
Subramanian P, Pirbadian S, El-Naggar MY, Jensen GJ. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc. Natl Acad. Sci. USA. 2018;115:E3246–E3255. doi: 10.1073/pnas.1718810115. PubMed DOI PMC
Marguet E, et al. Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem. Soc. Trans. 2013;41:436–442. doi: 10.1042/BST20120293. PubMed DOI
Shetty A, Hickey WJ. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4. PLoS ONE. 2014;9:e92143. doi: 10.1371/journal.pone.0092143. PubMed DOI PMC
Shetty A, Chen S, Tocheva EI, Jensen GJ, Hickey WJ. Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS ONE. 2011;6:e20725. doi: 10.1371/journal.pone.0020725. PubMed DOI PMC
Wei X, Vassallo CN, Pathak DT, Wall D. Myxobacteria produce outer membrane-enclosed tubes in unstructured environments. J. Bacteriol. 2014;196:1807–1814. doi: 10.1128/JB.00850-13. PubMed DOI PMC
Bhattacharya S, et al. A ubiquitous platform for bacterial nanotube biogenesis. Cell Rep. 2019;27:334–342 e310. doi: 10.1016/j.celrep.2019.02.055. PubMed DOI PMC
Diethmaier C, et al. The YmdB phosphodiesterase is a global regulator of late adaptive responses in Bacillus subtilis. J. Bacteriol. 2014;196:265–275. doi: 10.1128/JB.00826-13. PubMed DOI PMC
Dubey GP, et al. Architecture and characteristics of bacterial nanotubes. Dev. Cell. 2016;36:453–461. doi: 10.1016/j.devcel.2016.01.013. PubMed DOI
Kubori T, et al. Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis. Mol. Microbiol. 1997;24:399–410. doi: 10.1046/j.1365-2958.1997.3341714.x. PubMed DOI
Mamou G, Malli Mohan GB, Rouvinski A, Rosenberg A, Ben-Yehuda S. Early developmental program shapes colony morphology in bacteria. Cell Rep. 2016;14:1850–1857. doi: 10.1016/j.celrep.2016.01.071. PubMed DOI PMC
Stempler O, et al. Interspecies nutrient extraction and toxin delivery between bacteria. Nat. Commun. 2017;8:315. doi: 10.1038/s41467-017-00344-7. PubMed DOI PMC
Pal RR, et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell. 2019;177:683–696 e618. doi: 10.1016/j.cell.2019.02.022. PubMed DOI
Baidya AK, Bhattacharya S, Dubey GP, Mamou G, Ben-Yehuda S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr. Opin. Microbiol. 2018;42:1–6. doi: 10.1016/j.mib.2017.08.006. PubMed DOI
van Sinderen D, ten Berge A, Hayema BJ, Hamoen L, Venema G. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol. Microbiol. 1994;11:695–703. doi: 10.1111/j.1365-2958.1994.tb00347.x. PubMed DOI
Turner L, Ping L, Neubauer M, Berg HC. Visualizing flagella while tracking bacteria. Biophys. J. 2016;111:630–639. doi: 10.1016/j.bpj.2016.05.053. PubMed DOI PMC
Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science. 2008;320:1636–1638. doi: 10.1126/science.1157877. PubMed DOI
Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–1265. doi: 10.3390/biom5031245. PubMed DOI PMC
Burton, A. T., DeLoughery, A., Li, G. W. & Kearns, D. B. Transcriptional regulation and mechanism of SigN (ZpdN), a pBS32-encoded sigma factor in Bacillus subtilis. MBio10, 10.1128/mBio.01899-19 (2019). PubMed PMC
Nicolas P, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012;335:1103–1106. doi: 10.1126/science.1206848. PubMed DOI
Mirel DB, Chamberlin MJ. The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase. J. Bacteriol. 1989;171:3095–3101. doi: 10.1128/JB.171.6.3095-3101.1989. PubMed DOI PMC
Sevim E, Gaballa A, Belduz AO, Helmann JD. DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 sigma(D) proteins. J. Bacteriol. 2011;193:575–579. doi: 10.1128/JB.01193-10. PubMed DOI PMC
Albertini AM, Caramori T, Crabb WD, Scoffone F, Galizzi A. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 1991;173:3573–3579. doi: 10.1128/JB.173.11.3573-3579.1991. PubMed DOI PMC
Reuter M, et al. Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper? J. R. Soc. Interface. 2014;11:20130850. doi: 10.1098/rsif.2013.0850. PubMed DOI PMC
Lee S, et al. Dynamic analysis of pathogen-infected host cells using quantitative phase microscopy. J. Biomed. Opt. 2011;16:036004. doi: 10.1117/1.3548882. PubMed DOI
Mohamed YF, Valvano MA. A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology. 2014;24:564–576. doi: 10.1093/glycob/cwu025. PubMed DOI PMC
Li K, et al. Atomic force microscopy of side wall and septa peptidoglycan from Bacillus subtilis reveals an architectural remodeling during growth. Front. Microbiol. 2018;9:620. doi: 10.3389/fmicb.2018.00620. PubMed DOI PMC
Smith TJ, Blackman SA, Foster SJ. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology. 2000;146:249–262. doi: 10.1099/00221287-146-2-249. PubMed DOI
Yamamoto H, Kurosawa S, Sekiguchi J. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J. Bacteriol. 2003;185:6666–6677. doi: 10.1128/JB.185.22.6666-6677.2003. PubMed DOI PMC
Roth BL, Poot M, Yue ST, Millard PJ. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 1997;63:2421–2431. doi: 10.1128/AEM.63.6.2421-2431.1997. PubMed DOI PMC
Katsu T, Tsuchiya T, Fujita Y. Dissipation of membrane potential of Escherichia coli cells induced by macromolecular polylysine. Biochem. Biophys. Res. Commun. 1984;122:401–406. doi: 10.1016/0006-291X(84)90489-3. PubMed DOI
Izaki K, Matsuhashi M, Strominger JL. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 1968;243:3180–3192. PubMed
Svetlov MS, et al. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA. 2019;25:600–606. doi: 10.1261/rna.069260.118. PubMed DOI PMC
Calvori C, Frontali L, Leoni L, Tecce G. Effect of rifamycin on protein synthesis. Nature. 1965;207:417–418. doi: 10.1038/207417a0. PubMed DOI
Campbell EA, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–912. doi: 10.1016/S0092-8674(01)00286-0. PubMed DOI
Baidya AK, Rosenshine I, Ben-Yehuda S. Donor-delivered cell wall hydrolases facilitate nanotube penetration into recipient bacteria. Nat. Commun. 2020;11:1938. doi: 10.1038/s41467-020-15605-1. PubMed DOI PMC
Krasny L, Vacik T, Fucik V, Jonak J. Cloning and characterization of the str operon and elongation factor Tu expression in Bacillus stearothermophilus. J. Bacteriol. 2000;182:6114–6122. doi: 10.1128/JB.182.21.6114-6122.2000. PubMed DOI PMC
Holscher T, et al. Impaired competence in flagellar mutants of Bacillus subtilis is connected to the regulatory network governed by DegU. Environ. Microbiol. Rep. 2018;10:23–32. doi: 10.1111/1758-2229.12601. PubMed DOI
Rahmer R, Morabbi Heravi K, Altenbuchner J. Construction of a super-competent Bacillus subtilis 168 using the P mtlA -comKS inducible cassette. Front. Microbiol. 2015;6:1431. doi: 10.3389/fmicb.2015.01431. PubMed DOI PMC
Daly MJ, et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007;5:e92. doi: 10.1371/journal.pbio.0050092. PubMed DOI PMC
Calvo RA, Kearns DB. FlgM is secreted by the flagellar export apparatus in Bacillus subtilis. J. Bacteriol. 2015;197:81–91. doi: 10.1128/JB.02324-14. PubMed DOI PMC
Whatmore AM, Reed RH. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J. Gen. Microbiol. 1990;136:2521–2526. doi: 10.1099/00221287-136-12-2521. PubMed DOI
Beltran-Heredia E, et al. Membrane curvature induces cardiolipin sorting. Commun. Biol. 2019;2:225. doi: 10.1038/s42003-019-0471-x. PubMed DOI PMC
Danne, L. et al. Membrane remodeling by a bacterial phospholipid-methylating enzyme. MBio8, 10.1128/mBio.02082-16 (2017). PubMed PMC
Ducret A, Fleuchot B, Bergam P, Mignot T. Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. Elife. 2013;2:e00868. doi: 10.7554/eLife.00868. PubMed DOI PMC
Pathak DT, et al. Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLoS Genet. 2012;8:e1002626. doi: 10.1371/journal.pgen.1002626. PubMed DOI PMC
McCaig WD, Koller A, Thanassi DG. Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 2013;195:1120–1132. doi: 10.1128/JB.02007-12. PubMed DOI PMC
Sampath V, McCaig WD, Thanassi DG. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol. Microbiol. 2018;107:523–541. doi: 10.1111/mmi.13897. PubMed DOI
Li T, et al. Deinococcus radiodurans toxin-antitoxin MazEF-dr mediates cell death in response to DNA damage stress. Front. Microbiol. 2017;8:1427. doi: 10.3389/fmicb.2017.01427. PubMed DOI PMC
Hanna, S. J. et al. Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J. Cell Sci. 132, 10.1242/jcs.223321 (2019). PubMed PMC
Birmingham CL, Jiang X, Ohlson MB, Miller SI, Brumell JH. Salmonella-induced filament formation is a dynamic phenotype induced by rapidly replicating Salmonella enterica serovar typhimurium in epithelial cells. Infect. Immun. 2005;73:1204–1208. doi: 10.1128/IAI.73.2.1204-1208.2005. PubMed DOI PMC
Drab, M., Stopar, D., Kralj-Iglic, V. & Iglic, A. Inception mechanisms of tunneling nanotubes. Cells8, 10.3390/cells8060626 (2019). PubMed PMC
Souriant S, et al. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-dependent tunneling nanotube formation in macrophages. Cell Rep. 2019;26:3586–3599 e3587. doi: 10.1016/j.celrep.2019.02.091. PubMed DOI PMC
Sikova, M. et al. The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes. EMBO J. e102500, 10.15252/embj.2019102500 (2019). PubMed PMC
Gao E, Zhang C, Wang J. Effects of budesonide combined with noninvasive ventilation on PCT, sTREM-1, chest lung compliance, humoral immune function and quality of life in patients with AECOPD complicated with type II respiratory failure. Open Med. (Wars.) 2019;14:271–278. doi: 10.1515/med-2019-0023. PubMed DOI PMC
Erde J, Loo RR, Loo JA. Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J. Proteome Res. 2014;13:1885–1895. doi: 10.1021/pr4010019. PubMed DOI PMC
Gillet LC, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 2012;11:O111 016717. doi: 10.1074/mcp.O111.016717. PubMed DOI PMC
Boubakri H, et al. The absence of pupylation (prokaryotic ubiquitin-like protein modification) affects morphological and physiological differentiation in Streptomyces coelicolor. J. Bacteriol. 2015;197:3388–3399. doi: 10.1128/JB.00591-15. PubMed DOI PMC
Benada O, Pokorny V. Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 1990;16:235–239. doi: 10.1002/jemt.1060160304. PubMed DOI
R-Core-Team. R: A Language and Environment for Statistical Computing. Version 3.6.2. https://www.R-project.org/ (2019).
Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian Applied Regression Modeling Via Stan. R Package Version 2.19.3. https://mc-stan.org/rstanarm (2020).
LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials