The Absence of Pupylation (Prokaryotic Ubiquitin-Like Protein Modification) Affects Morphological and Physiological Differentiation in Streptomyces coelicolor
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26283768
PubMed Central
PMC4621069
DOI
10.1128/jb.00591-15
PII: JB.00591-15
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- delece genu MeSH
- molekulární sekvence - údaje MeSH
- posttranslační úpravy proteinů MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Streptomyces coelicolor genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
UNLABELLED: Protein turnover is essential in all living organisms for the maintenance of normal cell physiology. In eukaryotes, most cellular protein turnover involves the ubiquitin-proteasome pathway, in which proteins tagged with ubiquitin are targeted to the proteasome for degradation. In contrast, most bacteria lack a proteasome but harbor proteases for protein turnover. However, some actinobacteria, such as mycobacteria, possess a proteasome in addition to these proteases. A prokaryotic ubiquitination-like tagging process in mycobacteria was described and was named pupylation: proteins are tagged with Pup (prokaryotic ubiquitin-like protein) and directed to the proteasome for degradation. We report pupylation in another actinobacterium, Streptomyces coelicolor. Both the morphology and life cycle of Streptomyces species are complex (formation of a substrate and aerial mycelium followed by sporulation), and these bacteria are prolific producers of secondary metabolites with important medicinal and agricultural applications. The genes encoding the pupylation system in S. coelicolor are expressed at various stages of development. We demonstrated that pupylation targets numerous proteins and identified 20 of them. Furthermore, we established that abolition of pupylation has substantial effects on morphological and metabolic differentiation and on resistance to oxidative stress. In contrast, in most cases, a proteasome-deficient mutant showed only modest perturbations under the same conditions. Thus, the phenotype of the pup mutant does not appear to be due solely to defective proteasomal degradation. Presumably, pupylation has roles in addition to directing proteins to the proteasome. IMPORTANCE: Streptomyces spp. are filamentous and sporulating actinobacteria, remarkable for their morphological and metabolic differentiation. They produce numerous bioactive compounds, including antifungal, antibiotic, and antitumor compounds. There is therefore considerable interest in understanding the mechanisms by which Streptomyces species regulate their complex physiology and production of bioactive compounds. We studied the role in Streptomyces of pupylation, a posttranslational modification that tags proteins that are then directed to the proteasome for degradation. We demonstrated that the absence of pupylation had large effects on morphological differentiation, antibiotic production, and resistance to oxidative stress in S. coelicolor. The phenotypes of pupylation and proteasome-defective mutants differed and suggest that pupylation acts in a proteasome-independent manner in addition to its role in proteasomal degradation.
Institut Pasteur Plate Forme de Protéomique Paris France CNRS URA 2185 Paris France
Institute for Integrative Biology of the Cell CEA CNRS Université Paris Sud Orsay France
Institute of Microbiology of the ASCR v v i Prague Czech Republic
Zobrazit více v PubMed
Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. doi:10.1146/annurev.biochem.78.081507.101607. PubMed DOI PMC
Weissman AM. 2001. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178. doi:10.1038/35056563. PubMed DOI
Baker TA, Sauer RT. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci 31:647–653. doi:10.1016/j.tibs.2006.10.006. PubMed DOI PMC
Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E. 2009. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16:647–651. doi:10.1038/nsmb.1597. PubMed DOI
Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W. 1995. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5:766–774. doi:10.1016/S0960-9822(95)00153-9. PubMed DOI
Nagy I, Tamura T, Vanderleyden J, Baumeister W, De Mot R. 1998. The 20S proteasome of Streptomyces coelicolor. J Bacteriol 180:5448–5453. PubMed PMC
Pouch MN, Cournoyer B, Baumeister W. 2000. Characterization of the 20S proteasome from the actinomycete Frankia. Mol Microbiol 35:368–377. doi:10.1046/j.1365-2958.2000.01703.x. PubMed DOI
Knipfer N, Shrader TE. 1997. Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol Microbiol 25:375–383. doi:10.1046/j.1365-2958.1997.4721837.x. PubMed DOI
Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966. doi:10.1126/science.1091176. PubMed DOI
Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515–1520. doi:10.1038/nm1683. PubMed DOI PMC
Hong B, Wang L, Lammertyn E, Geukens N, Van Mellaert L, Li Y, Anne J. 2005. Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology 151:3137–3145. doi:10.1099/mic.0.28034-0. PubMed DOI
De Mot R, Schoofs G, Nagy I. 2007. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 188:257–271. doi:10.1007/s00203-007-0243-8. PubMed DOI
Mao XM, Ren NN, Sun N, Wang F, Zhou RC, Tang Y, Li YQ. 2014. Proteasome involvement in a complex cascade mediating SigT degradation during differentiation of Streptomyces coelicolor. FEBS Lett 588:608–613. doi:10.1016/j.febslet.2013.12.029. PubMed DOI
Burns KE, Liu WT, Boshoff HI, Dorrestein PC, Barry CE III. 2009. Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069–3075. doi:10.1074/jbc.M808032200. PubMed DOI PMC
Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107. doi:10.1126/science.1163885. PubMed DOI PMC
Burns KE, Darwin KH. 2010. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell Microbiol 12:424–431. doi:10.1111/j.1462-5822.2010.01447.x. PubMed DOI PMC
Bremm A, Komander D. 2010. A further case of Dop-ing in bacterial pupylation. EMBO Rep 11:722–723. doi:10.1038/embor.2010.149. PubMed DOI PMC
Cerda-Maira FA, Pearce MJ, Fuortes M, Bishai WR, Hubbard SR, Darwin KH. 2010. Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol Microbiol 77:1123–1135. doi:10.1111/j.1365-2958.2010.07276.x. PubMed DOI PMC
Iyer LM, Burroughs AM, Aravind L. 2008. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol Direct 3:45. doi:10.1186/1745-6150-3-45. PubMed DOI PMC
Wang T, Darwin KH, Li H. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 17:1352–1357. doi:10.1038/nsmb.1918. PubMed DOI PMC
Chen X, Solomon WC, Kang Y, Cerda-Maira F, Darwin KH, Walters KJ. 2009. Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J Mol Biol 392:208–217. doi:10.1016/j.jmb.2009.07.018. PubMed DOI PMC
Liao S, Shang Q, Zhang X, Zhang J, Xu C, Tu X. 2009. Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem J 422:207–215. doi:10.1042/BJ20090738. PubMed DOI
Sutter M, Striebel F, Damberger FF, Allain FH, Weber-Ban E. 2009. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett 583:3151–3157. doi:10.1016/j.febslet.2009.09.020. PubMed DOI
Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH. 2010. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol Cell 39:821–827. doi:10.1016/j.molcel.2010.07.019. PubMed DOI PMC
Imkamp F, Striebel F, Sutter M, Ozcelik D, Zimmermann N, Sander P, Weber-Ban E. 2010. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep 11:791–797. doi:10.1038/embor.2010.119. PubMed DOI PMC
Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE, Gygi SP, Darwin KH. 2010. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS One 5:e8589. doi:10.1371/journal.pone.0008589. PubMed DOI PMC
Poulsen C, Akhter Y, Jeon AH, Schmitt-Ulms G, Meyer HE, Stefanski A, Stuhler K, Wilmanns M, Song YH. 2010. Proteome-wide identification of mycobacterial pupylation targets. Mol Syst Biol 6:386. doi:10.1038/msb.2010.39. PubMed DOI PMC
Watrous J, Burns K, Liu WT, Patel A, Hook V, Bafna V, Barry CE III, Bark S, Dorrestein PC. 2010. Expansion of the mycobacterial “PUPylome.” Mol Biosyst 6:376–385. doi:10.1039/b916104j. PubMed DOI PMC
Yun HY, Tamura N, Tamura T. 2012. Rhodococcus prokaryotic ubiquitin-like protein (Pup) is degraded by deaminase of Pup (Dop). Biosci Biotechnol Biochem 76:1959–1966. doi:10.1271/bbb.120458. PubMed DOI
Kuberl A, Franzel B, Eggeling L, Polen T, Wolters DA, Bott M. 2014. Pupylated proteins in Corynebacterium glutamicum revealed by MudPIT analysis. Proteomics 14:1531–1542. doi:10.1002/pmic.201300531. PubMed DOI
Cerda-Maira FA, McAllister F, Bode NJ, Burns KE, Gygi SP, Darwin KH. 2011. Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli. EMBO Rep 12:863–870. doi:10.1038/embor.2011.109. PubMed DOI PMC
Barandun J, Delley CL, Weber-Ban E. 2012. The pupylation pathway and its role in mycobacteria. BMC Biol 10:95. doi:10.1186/1741-7007-10-95. PubMed DOI PMC
Chater K. 2011. Differentiation in Streptomyces: the properties and programming of diverse cell types, p 43–86. In Dyson P. (ed), Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, United Kingdom.
McCormick JR, Flardh K. 2012. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231. doi:10.1111/j.1574-6976.2011.00317.x. PubMed DOI PMC
de Crecy-Lagard V, Servant-Moisson P, Viala J, Grandvalet C, Mazodier P. 1999. Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol Microbiol 32:505–517. doi:10.1046/j.1365-2958.1999.01364.x. PubMed DOI
Lee CJ, Won HS, Kim JM, Lee BJ, Kang SO. 2007. Molecular domain organization of BldD, an essential transcriptional regulator for developmental process of Streptomyces coelicolor A3(2). Proteins 68:344–352. doi:10.1002/prot.21338. PubMed DOI
Kieser T, Bibb MJ, Chater K, Hopwood DA. 2000. Practical Streptomyces genetics. John Innes Foundation, Norwich, United Kingdom.
Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Raynal A, Karray F, Tuphile K, Darbon-Rongere E, Pernodet JL. 2006. Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Appl Environ Microbiol 72:4839–4844. doi:10.1128/AEM.00167-06. PubMed DOI PMC
Xu D, Seghezzi N, Esnault C, Virolle MJ. 2010. Repression of antibiotic production and sporulation in Streptomyces coelicolor by overexpression of a TetR family transcriptional regulator. Appl Environ Microbiol 76:7741–7753. doi:10.1128/AEM.00819-10. PubMed DOI PMC
Lautru S, Oves-Costales D, Pernodet JL, Challis GL. 2007. MbtH-like protein-mediated cross-talk between non-ribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology 153:1405–1412. doi:10.1099/mic.0.2006/003145-0. PubMed DOI
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. 2013. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. doi:10.1093/nar/gks1193. PubMed DOI PMC
Castro-Melchor M, Charaniya S, Karypis G, Takano E, Hu WS. 2010. Genome-wide inference of regulatory networks in Streptomyces coelicolor. BMC Genomics 11:578. doi:10.1186/1471-2164-11-578. PubMed DOI PMC
Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, Morrissey ER, Legaie R, Wohlleben W, Rodriguez-Garcia A, Martin JF, Burroughs NJ, Wellington EM, Smith MC. 2012. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol Cell Proteomics 11:M111.013797. doi:10.1074/mcp.M111.013797. PubMed DOI PMC
Bibb MJ, White J, Ward JM, Janssen GR. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545. doi:10.1111/j.1365-2958.1994.tb02187.x. PubMed DOI
Mao XM, Sun N, Wang F, Luo S, Zhou Z, Feng WH, Huang FL, Li YQ. 2013. Dual positive feedback regulation of protein degradation of an extra-cytoplasmic function sigma factor for cell differentiation in Streptomyces coelicolor. J Biol Chem 288:31217–31228. doi:10.1074/jbc.M113.491498. PubMed DOI PMC
Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP. 2008. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675. doi:10.1038/embor.2008.83. PubMed DOI PMC
Chater KF. 1972. A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72:9–28. doi:10.1099/00221287-72-1-9. PubMed DOI
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. 2011. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 157:1312–1328. doi:10.1099/mic.0.047555-0. PubMed DOI
Hopwood DA, Wildermuth H, Palmer HM. 1970. Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61:397–408. doi:10.1099/00221287-61-3-397. PubMed DOI
Darwin KH, Lin G, Chen Z, Li H, Nathan CF. 2005. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol 55:561–571. PubMed
Lamichhane G, Raghunand TR, Morrison NE, Woolwine SC, Tyagi S, Kandavelou K, Bishai WR. 2006. Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues. J Infect Dis 194:1233–1240. doi:10.1086/508288. PubMed DOI
Chen X, Qiu JD, Shi SP, Suo SB, Liang RP. 2013. Systematic analysis and prediction of pupylation sites in prokaryotic proteins. PLoS One 8:e74002. doi:10.1371/journal.pone.0074002. PubMed DOI PMC
Liu Z, Ma Q, Cao J, Gao X, Ren J, Xue Y. 2011. GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins. Mol Biosyst 7:2737–2740. doi:10.1039/c1mb05217a. PubMed DOI
Tung CW. 2013. Prediction of pupylation sites using the composition of k-spaced amino acid pairs. J Theor Biol 336:11–17. doi:10.1016/j.jtbi.2013.07.009. PubMed DOI
Liu G, Chater KF, Chandra G, Niu G, Tan H. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143. doi:10.1128/MMBR.00054-12. PubMed DOI PMC
Bishop A, Fielding S, Dyson P, Herron P. 2004. Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14:893–900. doi:10.1101/gr.1710304. PubMed DOI PMC
Bennett JA, Yarnall J, Cadwallader AB, Kuennen R, Bidey P, Stadelmaier B, McCormick JR. 2009. Medium-dependent phenotypes of Streptomyces coelicolor with mutations in ftsI or ftsW. J Bacteriol 191:661–664. doi:10.1128/JB.01048-08. PubMed DOI PMC
Springer B, Master S, Sander P, Zahrt T, McFalone M, Song J, Papavinasasundaram KG, Colston MJ, Boettger E, Deretic V. 2001. Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation. Infect Immun 69:5967–5973. doi:10.1128/IAI.69.10.5967-5973.2001. PubMed DOI PMC
Compton CL, Fernandopulle MS, Nagari RT, Sello JK. 2015. Genetic and proteomic analyses of pupylation in Streptomyces coelicolor. J Bacteriol 197:2747–2753. doi:10.1128/JB.00302-15. PubMed DOI PMC