Cloning and characterization of the str operon and elongation factor Tu expression in Bacillus stearothermophilus

. 2000 Nov ; 182 (21) : 6114-22.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid11029432

The complete primary structure of the str operon of Bacillus stearothermophilus was determined. It was established that the operon is a five-gene transcriptional unit: 5'-ybxF (unknown function; homology to eukaryotic ribosomal protein L30)-rpsL (S12)-rpsG (S7)-fus (elongation factor G [EF-G])-tuf (elongation factor Tu [EF-Tu])-3'. The main operon promoter (strp) was mapped upstream of ybxF, and its strength was compared with the strength of the tuf-specific promoter (tufp) located in the fus-tuf intergenic region. The strength of the tufp region to initiate transcription is about 20-fold higher than that of the strp region, as determined in chloramphenicol acetyltransferase assays. Deletion mapping experiments revealed that the different strengths of the promoters are the consequence of a combined effect of oppositely acting cis elements, identified upstream of strp (an inhibitory region) and tufp (a stimulatory A/T-rich block). Our results suggest that the oppositely adjusted core promoters significantly contribute to the differential expression of the str operon genes, as monitored by the expression of EF-Tu and EF-G.

Zobrazit více v PubMed

An G, Lee J S, Friesen J D. Evidence for an internal promoter preceding tufA in the str operon of Escherichia coli. J Bacteriol. 1982;149:548–553. PubMed PMC

Arndt E, Scholzen T, Krömer W, Hatakeyama T, Kimura M. Primary structures of ribosomal proteins of the archaebacterium Halobacterium marismortui and the eubacterium Bacillus stearothermophilus. Biochimie. 1991;73:657–668. PubMed

Band L, Yansura D G, Henner D J. Construction of a vector for cloning promoters in Bacillus subtilis. Gene. 1983;26:313–315. PubMed

Blum H, Beier H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987;8:93–99.

Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y. Predicting function: from genes to genomes and back. J Mol Biol. 1998;283:707–725. PubMed

Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. PubMed

Brombach M, Gualerzi C O, Nakamura Y, Pon C L. Molecular cloning and sequence of the Bacillus stearothermophilus translational initiation factor IF2 gene. Mol Gen Genet. 1986;205:97–102. PubMed

Bult C J, White O, Olsen G J, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996;273:1058–1073. PubMed

Busby S, Ebright R H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 1994;79:743–746. PubMed

Coulombe B, Burton Z. DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanism. Microbiol Mol Biol Rev. 1999;63:457–478. PubMed PMC

Diekmann S. Analyzing DNA curvature in polyacrylamide gels. Methods Enzymol. 1992;212:30–46. PubMed

Dubnau D, Davidoff-Abelson R. Fate of transforming DNA following uptake by competent Bacillus subtilis. J Mol Biol. 1971;56:209–221. PubMed

Gupta R S. Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes. Antonie Leeuwenhoek. 1997;72:49–61. PubMed

Gupta R S. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol. 1998;29:695–707. PubMed

Gupta R S, Golding G B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993;37:573–582. PubMed

Haldenwang W G. The sigma factors of Bacillus subtilis. Microbiol Rev. 1995;59:1–30. PubMed PMC

Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–580. PubMed

Harwood C R, Williams D M, Lovett P S. Nucleotide sequence of a Bacillus pumilus gene specifying chloramphenicol acetyltransferase. Gene. 1983;24:163–169. PubMed

Herwig S, Kruft V, Wittmann-Liebold B. Primary structures of ribosomal proteins L3 and L4 from Bacillus stearothermophilus. Eur J Biochem. 1992;207:877–885. PubMed

Itoh T, Takemoto K, Mori H, Gojobori T. Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol. 1999;16:332–346. PubMed

Jaskunas R S, Lindahl L, Nomura M, Burgess R R. Identification of two copies of the gene for the elongation factor EF-Tu in E. coli. Nature. 1975;257:458–462. PubMed

Jeon Y H, Negishi T, Shirakawa M, Yamazaki T, Fujita N, Ishihama A, Kyogoku Y. Solution structure of the activator contact domain of the RNA polymerase α subunit. Science. 1995;270:1495–1497. PubMed

Jonák J, Pokorná K, Meloun B, Karas K. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA. Eur J Biochem. 1986;154:355–362. PubMed

Kawarabayasi Y, Hino Y, Horikawa H, et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 1999;6:83–101. PubMed

Kimura M. The nucleotide sequences of Bacillus stearothermophilus ribosomal protein S12 and S7 genes: comparison with the str operon of Escherichia coli. Agric Biol Chem. 1990;55:207–213. PubMed

Koonin E V, Bork P, Sander C. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and ribosome modification enzyme? Nucleic Acids Res. 1994;22:2166–2167. PubMed PMC

Koonin E V, Galperin M Y. Prokaryotic genomes: the emerging paradigm of genome-based microbiology. Curr Opin Genet Dev. 1997;7:757–763. PubMed

Krásný L, Mesters J R, Tieleman L N, Kraal B, Fučík V, Hilgenfeld R, Jonák J. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J Mol Biol. 1998;283:371–381. PubMed

Labes G, Simon R, Wohlleben W. A rapid method for the analysis of plasmid content and copy number in various Streptomycetes grown on agar plates. Nucleic Acids Res. 1990;18:2197. PubMed PMC

Lechner K, Heller G, Böck A. Organization and nucleotide sequence of a transcriptional unit of Methanococcus vannileii comprising genes for protein synthesis elongation factors and ribosomal proteins. J Mol Evol. 1989;29:20–27. PubMed

Marion M J, Marion C. Localization of ribosomal proteins on the surface of mammalian 60S ribosomal subunits by means of immobilized enzymes. Correlation with chemical cross-linking data. Biochem Biophys Res Commun. 1987;143:1077–1083. PubMed

Marion M J, Reboud J P. Two specific ribonucleoprotein fragments from rat liver 60S ribosomal subunits. Nucleic Acids Res. 1981;17:4325–4337. PubMed PMC

Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol. 1961;3:208–218.

Matzura O, Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci. 1996;12:247–249. PubMed

Médigue C, Rouxel T, Vigier P, Hénaut A, Danchin A. Evidence for horizontal gene transfer in Escherichia coli speciation. J Mol Biol. 1991;222:851–856. PubMed

Moszer I, Rocha E P, Danchin A. Codon usage and lateral gene transfer in Bacillus subtilis. Curr Opin Microbiol. 1999;2:524–528. PubMed

Mukerji M, Mahadevan S. Characterization of the negative elements involved in silencing the bgl operon of Escherichia coli: possible roles for DNA gyrase, H-NS, and CRP-cAMP in regulation. Mol Microbiol. 1997;24:617–627. PubMed

Nakanishi O, Oyanagi M, Kuwano Y, Tanaka T, Nakayama T, Mitsui H, Nabeshima Y, Ogata K. Molecular cloning and nucleotide sequences of cDNAs specific for rat liver ribosomal proteins S17 and L30. Gene. 1985;35:289–296. PubMed

Nishi T, Itoh S. Enhancement of transcriptional activity of the Escherichia coli trp promoter by upstream A+T rich regions. Gene. 1986;44:29–36. PubMed

Nitschké P, Gerdoux-Jamet P, Chiapello H, Faroux G, Hénaut C, Hénaut A, Danchin A. Indigo: a world wide web review of genomes and gene functions. FEMS Microbiol Rev. 1998;22:207–227. PubMed

Panayotatos N, Wells R D. Cruciform structures in supercoiled DNA. Nature. 1981;289:466–470. PubMed

Pérez-Martín J, Lorenzo V. Clues and consequences of DNA bending in transcription. Annu Rev Microbiol. 1997;51:593–628. PubMed

Post L E, Arfsten A E, Reusser F, Nomura M. DNA sequences of promoter regions for the str and spc ribosomal protein operons in E. coli. Cell. 1978;15:215–229. PubMed

Prod'hom G, Lagier B, Pelicic V, Hance A J, Cicquel B, Guilhot C. A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences. FEMS Microbiol Lett. 1998;158:75–81. PubMed

Rivetti C, Guthold M, Bustamante C. Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J. 1999;18:4464–4475. PubMed PMC

Ross W, Gosink K K, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse R L. A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science. 1993;262:1407–1413. PubMed

Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 1989.

Shazand K, Tucker J, Grunberg-Manago M, Rabinowitz J C, Leighton T. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli. J Bacteriol. 1993;175:2880–2887. PubMed PMC

Singh J, Mukerji M, Mahadevan S. Transcriptional activation of the Escherichia coli bgl operon: negative regulation by DNA structural elements near the promoter. Mol Microbiol. 1995;17:1085–1092. PubMed

Takami H, Takaki Y, Nakasone K, Hirama C, Inoue A, Horikoshi K. Sequence analysis of a 32-kb region including the major ribosomal gene clusters from alkaliphilic Bacillus sp. strain C-125. Biosci Biotechnol Biochem. 1999;63:452–455. PubMed

Tieleman L N, van Wezel G P, Bibb M J, Kraal B. Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters. J Bacteriol. 1997;179:3619–3624. PubMed PMC

Wu L, Welker N E. Cloning and characterization of a glutamine transport operon of Bacillus stearothermophilus NUB36: effect of temperature on regulation of transcription. J Bacteriol. 1991;173:4877–4888. PubMed PMC

Yamada M, Kubo M, Miyake T, Sakaguchi R, Higo Y, Imanaka T. Promoter sequence analysis in Bacillus and Escherichia: construction of strong promoters in E. coli. Gene. 1991;99:109–114. PubMed

Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. PubMed

Yasumoto K, Yoshikava H, Takahashi H. Sequence analysis of a 50 kb region between spo0H and rrnH on the Bacillus subtilis chromosome. Microbiology. 1996;142:3039–3046. PubMed

Young S F, Furano A V. Regulation of E. coli elongation factor Tu. Cell. 1981;24:695–706. PubMed

Zengel J M, Archer R H, Lindahl L. The nucleotide sequence of the Escherichia coli fus gene, coding for elongation factor G. Nucleic Acids Res. 1984;12:2181–2192. PubMed PMC

Zengel J M, Lindahl L. A secondary promoter for elongation factor Tu synthesis in the str ribosomal protein operon of Escherichia coli. Mol Gen Genet. 1982;185:487–492. PubMed

Zengel J M, Lindahl L. Mapping of two promoters for elongation factor Tu within the structural gene for elongation factor G. Biochim Biophys Acta. 1990;1050:317–322. PubMed

Zobrazit více v PubMed

GENBANK
AJ133759, AJ133760, AJ246558, AJ249559

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...