LEGO-Lipophosphonoxin membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by outer membrane

. 2025 Jan 07 ; 15 (1) : 1206. [epub] 20250107

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39775141

Grantová podpora
154024 Charles University Grant Agency
LX22NPO5103 European Union-Next Generation EU
22-08857S Czech Science Foundation

Odkazy

PubMed 39775141
PubMed Central PMC11707287
DOI 10.1038/s41598-024-83205-w
PII: 10.1038/s41598-024-83205-w
Knihovny.cz E-zdroje

Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length. LEGO-1-4 permeabilized cytoplasmic membrane of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, LEGO-1 with the longest linker module being the most effective. Gram-positive bacteria were more sensitive to LEGO-LPPO action compared to Gram-negatives, which was manifested as a delayed membrane permeabilization, higher minimal inhibitory concentration and lower amount of LEGO-LPPO bound to the cells. Outer membrane permeability measurements and time-kill assay showed that presence of the intact outer membrane brought about reduced susceptibility of Gram-negatives. Using liposome leakage and in silico simulations, we showed that membranes with major content of phosphatidylethanolamine were more prone to LEGO-LPPO permeabilization. The proposed mechanism stems from an electrostatic repulsion between highly positively charged LEGO-1 molecules and positively charged amino groups of phosphatidylethanolamine which destabilizes the membrane. Collectively, these data suggest that LEGO-LPPO membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by presence of intact outer membrane.

Zobrazit více v PubMed

Miethke, M. et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem.5, 726–749 (2021). PubMed PMC

Beyer, P. & Paulin, S. The antibacterial research and development pipeline needs urgent solutions. ACS Infect. Dis.6, 1289–1291 (2020).

Xuan, J. et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updates68, 100954 (2023). PubMed

MacNair, C. R., Rutherford, S. T. & Tan, M. W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat. Rev. Microbiol.22, 262–275 (2023). PubMed

Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature626, 177–185 (2024). PubMed PMC

Ji, S. et al. Antimicrobial peptides: An alternative to traditional antibiotics. Eur. J. Med. Chem.265, 116072 (2024). PubMed

Yuan, J. et al. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur. J. Med. Chem.262, 115896 (2023). PubMed

Hurdle, J. G., O’Neill, A. J., Chopra, I. & Lee, R. E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol.9, 62 (2011). PubMed PMC

Mingeot-Leclercq, M. P. & Décout, J. L. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MedChemComm7, 586–611 (2016).

Lopez, D. & Koch, G. Exploring functional membrane microdomains in bacteria: an overview. Curr. Opin. Microbiol.36, 76–84 (2017). PubMed PMC

Mehta, D., Saini, V., Aggarwal, B., Khan, A. & Bajaj, A. Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol. Aspects Med.81, 100999 (2021). PubMed

Dias, C. & Rauter, A. P. Membrane-targeting antibiotics: recent developments outside the peptide space. Future Med. Chem.11, 211–228 (2019). PubMed

Rejman, D. et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem.54, 7884–7898 (2011). PubMed

Panova, N. et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS One10, e0145918 (2015). PubMed PMC

Seydlová, G. et al. Lipophosphonoxins II: design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem.60, 6098–6118 (2017). PubMed

Panova, N. et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS One10 (2015). PubMed PMC

Zborníková, E. et al. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega5, 3165–3171 (2020). PubMed PMC

Do Pham, D. D. et al. LEGO-lipophosphonoxins: a novel approach in designing membrane targeting antimicrobials. J. Med. Chem.65, 10045–10078 (2022). PubMed PMC

Scott, R. W. & Tew, G. N. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr. Top. Med. Chem.17, 576–589 (2017). PubMed

Liu, D. et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem. Int. Ed.43, 1158–1162 (2004). PubMed

Braun, M. & Silhavy, T. J. Imp/OstA is required for cell envelope biogenesis in Escherichiacoli. Mol. Microbiol.45, 1289–1302 (2002). PubMed

Brook, I. Inoculum effect. Clin. Infect. Dis.11, 361–368 (1989). PubMed

Salas, J. R., Jaberi-Douraki, M., Wen, X. & Volkova, V. V. Mathematical modeling of the ‘inoculum effect’: six applicable models and the MIC advancement point concept. fnaa012 FEMS Microbiol. Lett.367 (2020). PubMed PMC

Humphries, R. M. et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol.56 (2018). PubMed PMC

Smith, K. P. & Kirby, J. E. The inoculum effect in the era of multidrug resistance: minor differences in inoculum have dramatic effect on MIC determination. Antimicrob. Agents Chemother.62 (2018). PubMed PMC

Wimley, W. C., Selsted, M. E. & White, S. H. Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Sci.3, 1362–1373 (1994). PubMed PMC

Meredith, H. R., Srimany, J. K., Lee, A. J., Lopatkin, A. J. & You, L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol.11, 182–188 (2015). PubMed PMC

Loffredo, M. R. et al. Inoculum effect of antimicrobial peptides. Proc. Natl. Acad. Sci USA118, e2014364118 (2021). PubMed PMC

Bhagunde, P. et al. Mathematical modeling to characterize the inoculum effect. Antimicrob. Agents Chemother.54, 4739–4743 (2010). PubMed PMC

Udekwu, K. I., Parrish, N., Ankomah, P., Baquero, F. & Levin, B. R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother.63, 745–757 (2009). PubMed PMC

Dugić, M. et al. LEGO-lipophosphonoxins: length of hydrophobic module affects permeabilizing activity in target membranes of different phospholipid composition. RSC Adv.14, 2745–2756 (2024). PubMed PMC

Young, S. A., Desbois, A. P., Coote, P. J. & Smith, T. K. Characterisation of Staphylococcus aureus lipids by nanoelectrospray ionisation tandem mass spectrometry (nESI-MS/MS). bioRxiv 593483. 10.1101/593483 (2019).

Epand, R. M. & Epand, R. F. Bacterial membrane lipids in the action of antimicrobial agents. J. Peptide Sci.17, 298–305 (2011). PubMed

Látrová, K. et al. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci. Rep.11, 1–16 (2021). PubMed PMC

Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev.56, 395–411 (1992). PubMed PMC

Ladokhin, A. S., Wimley, W. C., Hristova, K. & White, S. H. Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods Enzymol.278, 474–486 (1997). PubMed

Hristova, K., Selsted, M. E. & White, S. H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem.272, 24224–24233 (1997). PubMed

Sampson, B. A., Misra, R. & Benson’, S. A. Identification and characterization of a new gene of Escherichiacoli K-12 involved in outer membrane permeability (1989). PubMed PMC

EUCAST. EUCAST reading guide for broth microdilution. European Committee on Antimicrobial Susceptibility Testing 1–20 http://www.eucast.org (2022).

Fišer, R. & Konopásek, I. Different modes of membrane permeabilization by two RTX toxins: HlyA from Escherichiacoli and CyaA from Bordetellapertussis. Biochim. Biophys. Acta (BBA) Biomembr.1788, 1249–1254 (2009). PubMed

MacDonald, R. C. et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta (BBA) Biomembr.1061, 297–303 (1991). PubMed

Ladokhin, A. S., Wimley, W. C. & White, S. H. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys. J.69, 1964–1971 (1995). PubMed PMC

Wojdyr, M. Fityk: a general-purpose peak fitting program. urn:issn:0021-889843, 1126–1128 (2010).

Gray, M., Szabo, G., Otero, A. S., Gray, L. & Hewlett, E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetellapertussis AC toxin. J. Biol. Chem.273, 18260–18267 (1998). PubMed

Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1–2, 19–25 (2015).

Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem.29, 1859–1865 (2008). PubMed

Huang, J. & Mackerell, A. D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem.34, 2135–2145 (2013). PubMed PMC

Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput.12, 405–413 (2016). PubMed PMC

Chen, F. & Smith, P. E. Simulated surface tensions of common water models. J. Chem. Phys.126 (2007). PubMed

Humphrey, W., Dalke, A. & Schulten, K. V. M. D. Visual molecular dynamics. J. Mol. Graph.14, 33–38 (1996). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...