LEGO-Lipophosphonoxin membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by outer membrane
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
154024
Charles University Grant Agency
LX22NPO5103
European Union-Next Generation EU
22-08857S
Czech Science Foundation
PubMed
39775141
PubMed Central
PMC11707287
DOI
10.1038/s41598-024-83205-w
PII: 10.1038/s41598-024-83205-w
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- buněčná membrána metabolismus MeSH
- Escherichia coli metabolismus účinky léků MeSH
- fosfatidylethanolaminy * chemie metabolismus MeSH
- mikrobiální testy citlivosti * MeSH
- permeabilita buněčné membrány účinky léků MeSH
- Staphylococcus aureus účinky léků metabolismus MeSH
- vnější bakteriální membrána metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- fosfatidylethanolaminy * MeSH
- phosphatidylethanolamine MeSH Prohlížeč
Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length. LEGO-1-4 permeabilized cytoplasmic membrane of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, LEGO-1 with the longest linker module being the most effective. Gram-positive bacteria were more sensitive to LEGO-LPPO action compared to Gram-negatives, which was manifested as a delayed membrane permeabilization, higher minimal inhibitory concentration and lower amount of LEGO-LPPO bound to the cells. Outer membrane permeability measurements and time-kill assay showed that presence of the intact outer membrane brought about reduced susceptibility of Gram-negatives. Using liposome leakage and in silico simulations, we showed that membranes with major content of phosphatidylethanolamine were more prone to LEGO-LPPO permeabilization. The proposed mechanism stems from an electrostatic repulsion between highly positively charged LEGO-1 molecules and positively charged amino groups of phosphatidylethanolamine which destabilizes the membrane. Collectively, these data suggest that LEGO-LPPO membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by presence of intact outer membrane.
Zobrazit více v PubMed
Miethke, M. et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem.5, 726–749 (2021). PubMed PMC
Beyer, P. & Paulin, S. The antibacterial research and development pipeline needs urgent solutions. ACS Infect. Dis.6, 1289–1291 (2020).
Xuan, J. et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updates68, 100954 (2023). PubMed
MacNair, C. R., Rutherford, S. T. & Tan, M. W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat. Rev. Microbiol.22, 262–275 (2023). PubMed
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature626, 177–185 (2024). PubMed PMC
Ji, S. et al. Antimicrobial peptides: An alternative to traditional antibiotics. Eur. J. Med. Chem.265, 116072 (2024). PubMed
Yuan, J. et al. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur. J. Med. Chem.262, 115896 (2023). PubMed
Hurdle, J. G., O’Neill, A. J., Chopra, I. & Lee, R. E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol.9, 62 (2011). PubMed PMC
Mingeot-Leclercq, M. P. & Décout, J. L. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MedChemComm7, 586–611 (2016).
Lopez, D. & Koch, G. Exploring functional membrane microdomains in bacteria: an overview. Curr. Opin. Microbiol.36, 76–84 (2017). PubMed PMC
Mehta, D., Saini, V., Aggarwal, B., Khan, A. & Bajaj, A. Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol. Aspects Med.81, 100999 (2021). PubMed
Dias, C. & Rauter, A. P. Membrane-targeting antibiotics: recent developments outside the peptide space. Future Med. Chem.11, 211–228 (2019). PubMed
Rejman, D. et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem.54, 7884–7898 (2011). PubMed
Panova, N. et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS One10, e0145918 (2015). PubMed PMC
Seydlová, G. et al. Lipophosphonoxins II: design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem.60, 6098–6118 (2017). PubMed
Panova, N. et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS One10 (2015). PubMed PMC
Zborníková, E. et al. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega5, 3165–3171 (2020). PubMed PMC
Do Pham, D. D. et al. LEGO-lipophosphonoxins: a novel approach in designing membrane targeting antimicrobials. J. Med. Chem.65, 10045–10078 (2022). PubMed PMC
Scott, R. W. & Tew, G. N. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr. Top. Med. Chem.17, 576–589 (2017). PubMed
Liu, D. et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem. Int. Ed.43, 1158–1162 (2004). PubMed
Braun, M. & Silhavy, T. J. Imp/OstA is required for cell envelope biogenesis in Escherichiacoli. Mol. Microbiol.45, 1289–1302 (2002). PubMed
Brook, I. Inoculum effect. Clin. Infect. Dis.11, 361–368 (1989). PubMed
Salas, J. R., Jaberi-Douraki, M., Wen, X. & Volkova, V. V. Mathematical modeling of the ‘inoculum effect’: six applicable models and the MIC advancement point concept. fnaa012 FEMS Microbiol. Lett.367 (2020). PubMed PMC
Humphries, R. M. et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol.56 (2018). PubMed PMC
Smith, K. P. & Kirby, J. E. The inoculum effect in the era of multidrug resistance: minor differences in inoculum have dramatic effect on MIC determination. Antimicrob. Agents Chemother.62 (2018). PubMed PMC
Wimley, W. C., Selsted, M. E. & White, S. H. Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Sci.3, 1362–1373 (1994). PubMed PMC
Meredith, H. R., Srimany, J. K., Lee, A. J., Lopatkin, A. J. & You, L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol.11, 182–188 (2015). PubMed PMC
Loffredo, M. R. et al. Inoculum effect of antimicrobial peptides. Proc. Natl. Acad. Sci USA118, e2014364118 (2021). PubMed PMC
Bhagunde, P. et al. Mathematical modeling to characterize the inoculum effect. Antimicrob. Agents Chemother.54, 4739–4743 (2010). PubMed PMC
Udekwu, K. I., Parrish, N., Ankomah, P., Baquero, F. & Levin, B. R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother.63, 745–757 (2009). PubMed PMC
Dugić, M. et al. LEGO-lipophosphonoxins: length of hydrophobic module affects permeabilizing activity in target membranes of different phospholipid composition. RSC Adv.14, 2745–2756 (2024). PubMed PMC
Young, S. A., Desbois, A. P., Coote, P. J. & Smith, T. K. Characterisation of Staphylococcus aureus lipids by nanoelectrospray ionisation tandem mass spectrometry (nESI-MS/MS). bioRxiv 593483. 10.1101/593483 (2019).
Epand, R. M. & Epand, R. F. Bacterial membrane lipids in the action of antimicrobial agents. J. Peptide Sci.17, 298–305 (2011). PubMed
Látrová, K. et al. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci. Rep.11, 1–16 (2021). PubMed PMC
Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev.56, 395–411 (1992). PubMed PMC
Ladokhin, A. S., Wimley, W. C., Hristova, K. & White, S. H. Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods Enzymol.278, 474–486 (1997). PubMed
Hristova, K., Selsted, M. E. & White, S. H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem.272, 24224–24233 (1997). PubMed
Sampson, B. A., Misra, R. & Benson’, S. A. Identification and characterization of a new gene of Escherichiacoli K-12 involved in outer membrane permeability (1989). PubMed PMC
EUCAST. EUCAST reading guide for broth microdilution. European Committee on Antimicrobial Susceptibility Testing 1–20 http://www.eucast.org (2022).
Fišer, R. & Konopásek, I. Different modes of membrane permeabilization by two RTX toxins: HlyA from Escherichiacoli and CyaA from Bordetellapertussis. Biochim. Biophys. Acta (BBA) Biomembr.1788, 1249–1254 (2009). PubMed
MacDonald, R. C. et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta (BBA) Biomembr.1061, 297–303 (1991). PubMed
Ladokhin, A. S., Wimley, W. C. & White, S. H. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys. J.69, 1964–1971 (1995). PubMed PMC
Wojdyr, M. Fityk: a general-purpose peak fitting program. urn:issn:0021-889843, 1126–1128 (2010).
Gray, M., Szabo, G., Otero, A. S., Gray, L. & Hewlett, E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetellapertussis AC toxin. J. Biol. Chem.273, 18260–18267 (1998). PubMed
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1–2, 19–25 (2015).
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem.29, 1859–1865 (2008). PubMed
Huang, J. & Mackerell, A. D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem.34, 2135–2145 (2013). PubMed PMC
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput.12, 405–413 (2016). PubMed PMC
Chen, F. & Smith, P. E. Simulated surface tensions of common water models. J. Chem. Phys.126 (2007). PubMed
Humphrey, W., Dalke, A. & Schulten, K. V. M. D. Visual molecular dynamics. J. Mol. Graph.14, 33–38 (1996). PubMed