Daptomycin Pore Formation and Stoichiometry Depend on Membrane Potential of Target Membrane
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30323037
PubMed Central
PMC6325215
DOI
10.1128/aac.01589-18
PII: AAC.01589-18
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus subtilis, Staphylococcus aureus, antimicrobial lipopeptides, daptomycin, membrane, pore formation, single pore conductance,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacillus subtilis účinky léků metabolismus MeSH
- biologický transport fyziologie MeSH
- cytotoxické proteiny tvořící póry farmakologie MeSH
- daptomycin farmakologie MeSH
- membránové potenciály účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- permeabilita buněčné membrány účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- cytotoxické proteiny tvořící póry MeSH
- daptomycin MeSH
Daptomycin is a calcium-dependent lipodepsipeptide antibiotic clinically used to treat serious infections caused by Gram-positive pathogens. Its precise mode of action is somewhat controversial; the biggest issue is daptomycin pore formation, which we directly investigated here. We first performed a screening experiment using propidium iodide (PI) entry to Bacillus subtilis cells and chose the optimum and therapeutically relevant conditions (10 µg/ml daptomycin and 1.25 mM CaCl2) for the subsequent analyses. Using conductance measurements on planar lipid bilayers, we show that daptomycin forms nonuniform oligomeric pores with conductance ranging from 120 pS to 14 nS. The smallest conductance unit is probably a dimer; however, tetramers and pentamers occur in the membrane most frequently. Moreover, daptomycin pore-forming activity is exponentially dependent on the applied membrane voltage. We further analyzed the membrane-permeabilizing activity in B. subtilis cells using fluorescence methods [PI and DiSC3(5)]. Daptomycin most rapidly permeabilizes cells with high initial membrane potential and dissipates it within a few minutes. Low initial membrane potential hinders daptomycin pore formation.
Zobrazit více v PubMed
Hachmann AB, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann JD. 2011. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob Agents Chemother 55:4326–4337. doi:10.1128/AAC.01819-10. PubMed DOI PMC
Taylor R, Butt K, Scott B, Zhang T, Muraih JK, Mintzer E, Taylor S, Palmer M. 2016. Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145. Biochim Biophys Acta 1858:1999–2005. doi:10.1016/j.bbamem.2016.05.020. PubMed DOI
Jung D, Rozek A, Okon M, Hancock RE. 2004. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11:949–957. doi:10.1016/j.chembiol.2004.04.020. PubMed DOI
Muraih JK, Pearson A, Silverman J, Palmer M. 2011. Oligomerization of daptomycin on membranes. Biochim Biophys Acta 1808:1154–1160. doi:10.1016/j.bbamem.2011.01.001. PubMed DOI
Alborn WE Jr, Allen NE, Preston DA. 1991. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother 35:2282–2287. doi:10.1128/AAC.35.11.2282. PubMed DOI PMC
Silverman JA, Perlmutter NG, Shapiro HM. 2003. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544. doi:10.1128/AAC.47.8.2538-2544.2003. PubMed DOI PMC
Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV, Kohl B, Siersma T, Bandow JE, Sahl H-G, Schneider T, Hamoen LW. 2016. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 113:E7077–E7086. doi:10.1073/pnas.1611173113. PubMed DOI PMC
Pogliano J, Pogliano N, Silverman JA. 2012. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504. doi:10.1128/JB.00011-12. PubMed DOI PMC
Zhang T, Muraih JK, Tishbi N, Herskowitz J, Victor RL, Silverman J, Uwumarenogie S, Taylor SD, Palmer M, Mintzer E. 2014. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J Biol Chem 289:11584–11591. doi:10.1074/jbc.M114.554444. PubMed DOI PMC
Zhang TH, Muraih JK, MacCormick B, Silverman J, Palmer M. 2014. Daptomycin forms cation- and size-selective pores in model membranes. Biochim Biophys Acta 1838:2425–2430. doi:10.1016/j.bbamem.2014.05.014. PubMed DOI
Chen YF, Sun TL, Sun Y, Huang HW. 2014. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry 53:5384–5392. doi:10.1021/bi500779g. PubMed DOI PMC
Taylor R, Beriashvili D, Taylor S, Palmer M. 2017. Daptomycin pore formation is restricted by lipid acyl chain composition. ACS Infect Dis 3:797–801. doi:10.1021/acsinfecdis.7b00138. PubMed DOI
Zhang J, Scoten K, Straus SK. 2016. Daptomycin leakage is selective. ACS Infect Dis 2:682–687. doi:10.1021/acsinfecdis.6b00152. PubMed DOI
Lakey JH, Lea EJA. 1986. The role of acyl chain character and other determinants on the bilayer activity of A21978C an acidic lipopeptide antibiotic. Biochim Biophys Acta 859:219–226. doi:10.1016/0005-2736(86)90217-8. PubMed DOI
Raja A, LaBonte J, Lebbos J, Kirkpatrick P. 2003. Daptomycin. Nat Rev Drug Discov 2:943–944. doi:10.1038/nrd1258. PubMed DOI
Taylor SD, Palmer M. 2016. The action mechanism of daptomycin. Bioorg Med Chem 24:6253–6268. doi:10.1016/j.bmc.2016.05.052. PubMed DOI
Muraih JK, Palmer M. 2012. Estimation of the subunit stoichiometry of the membrane-associated daptomycin oligomer by FRET. Biochim Biophys Acta 1818:1642–1647. doi:10.1016/j.bbamem.2012.02.019. PubMed DOI
Muraih JK, Harris J, Taylor SD, Palmer M. 2012. Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta 1818:673–678. doi:10.1016/j.bbamem.2011.10.027. PubMed DOI
Te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. 2016. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front Cell Dev Biol 4:29. doi:10.3389/fcell.2016.00029. PubMed DOI PMC
Sava L, Pillai S, More U, Sontakke A. 2005. Serum calcium measurement: total versus free (ionized) calcium. Indian J Clin Biochem 20:158–161. doi:10.1007/BF02867418. PubMed DOI PMC
Dvorchik BH, Brazier D, DeBruin MF, Arbeit RD. 2003. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 47:1318–1323. doi:10.1128/AAC.47.4.1318-1323.2003. PubMed DOI PMC
Benvenuto M, Benziger DP, Yankelev S, Vigliani G. 2006. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50:3245–3249. doi:10.1128/AAC.00247-06. PubMed DOI PMC
Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55. doi:10.1093/cid/ciq146. PubMed DOI
Benson CA, Beaudette F, Trenholm G. 1987. Comparative in-vitro activity of LY146032 a new peptolide, with vancomycin and eight other agents against Gram-positive organisms. J Antimicrob Chemother 20:191–196. PubMed
Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M. 2010. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48:1584–1591. doi:10.1128/JCM.01831-09. PubMed DOI PMC
Tan TY, Ng LSY, Kwang LL. 2007. Evaluation of disc susceptibility tests performed directly from positive blood cultures. J Clin Pathol 61:343–346. doi:10.1136/jcp.2007.050757. PubMed DOI
Yang Y, Xiang Y, Xu M. 2015. From red to green: the propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci Rep 5:18583. doi:10.1038/srep18583. PubMed DOI PMC
Zaritsky A, Kihara M, Macnab RM. 1981. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol 63:215–231. doi:10.1007/BF01870983. PubMed DOI
Malinsky J, Tanner W, Opekarova M. 2016. Transmembrane voltage: potential to induce lateral microdomains. Biochim Biophys Acta 1861:806–811. doi:10.1016/j.bbalip.2016.02.012. PubMed DOI
Grassi L, Di Luca M, Maisetta G, Rinaldi AC, Esin S, Trampuz A, Batoni G. 2017. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front Microbiol 8:1917. doi:10.3389/fmicb.2017.01917. PubMed DOI PMC
Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J, Versées W, Hofkens J, Jansen M, Fauvart M, Michiels J. 2015. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell 59:9–21. doi:10.1016/j.molcel.2015.05.011. PubMed DOI
Prax M, Mechler L, Weidenmaier C, Bertram R. 2016. Glucose augments killing efficiency of daptomycin challenged Staphylococcus aureus persisters. PLoS One 11:e0150907. doi:10.1371/journal.pone.0150907. PubMed DOI PMC
Rubinchik E, Schneider T, Elliott M, Scott WR, Pan J, Anklin C, Yang H, Dugourd D, Muller A, Gries K, Straus SK, Sahl HG, Hancock RE. 2011. Mechanism of action and limited cross-resistance of new lipopeptide MX-2401. Antimicrob Agents Chemother 55:2743–2754. doi:10.1128/AAC.00170-11. PubMed DOI PMC
Palacios LE, Wang T. 2005. Egg-yolk lipid fractionation and lecithin characterization. J Am Oil Chem Soc 82:571–578. doi:10.1007/s11746-005-1111-4. DOI
Hachmann AB, Angert ER, Helmann JD. 2009. Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Chemother 53:1598–1609. doi:10.1128/AAC.01329-08. PubMed DOI PMC
Kreutzberger MA, Pokorny A, Almeida PF. 2017. Daptomycin-phosphatidylglycerol domains in lipid membranes. Langmuir 33:13669–13679. doi:10.1021/acs.langmuir.7b01841. PubMed DOI PMC
Klapperstück T, Glanz D, Klapperstuck M, Wohlrab J. 2009. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytometry A 75:593–608. doi:10.1002/cyto.a.20735. PubMed DOI
Tanner MK, Wellhausen SR. 1998. Flow cytometric detection of fluorescent redistributional dyes for measurement of cell transmembrane potential. Methods Mol Biol 91:85–95. PubMed
Whatmore AM, Chudek JA, Reed RH. 1990. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535. doi:10.1099/00221287-136-12-2527. PubMed DOI
Nicolai C, Sachs F. 2013. Solving ion channel kinetics with the QuB software. Biophys Rev Lett 08:191–211. doi:10.1142/S1793048013300053. DOI
LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials