Daptomycin Pore Formation and Stoichiometry Depend on Membrane Potential of Target Membrane

. 2019 Jan ; 63 (1) : . [epub] 20181221

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30323037

Daptomycin is a calcium-dependent lipodepsipeptide antibiotic clinically used to treat serious infections caused by Gram-positive pathogens. Its precise mode of action is somewhat controversial; the biggest issue is daptomycin pore formation, which we directly investigated here. We first performed a screening experiment using propidium iodide (PI) entry to Bacillus subtilis cells and chose the optimum and therapeutically relevant conditions (10 µg/ml daptomycin and 1.25 mM CaCl2) for the subsequent analyses. Using conductance measurements on planar lipid bilayers, we show that daptomycin forms nonuniform oligomeric pores with conductance ranging from 120 pS to 14 nS. The smallest conductance unit is probably a dimer; however, tetramers and pentamers occur in the membrane most frequently. Moreover, daptomycin pore-forming activity is exponentially dependent on the applied membrane voltage. We further analyzed the membrane-permeabilizing activity in B. subtilis cells using fluorescence methods [PI and DiSC3(5)]. Daptomycin most rapidly permeabilizes cells with high initial membrane potential and dissipates it within a few minutes. Low initial membrane potential hinders daptomycin pore formation.

Zobrazit více v PubMed

Hachmann AB, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann JD. 2011. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob Agents Chemother 55:4326–4337. doi:10.1128/AAC.01819-10. PubMed DOI PMC

Taylor R, Butt K, Scott B, Zhang T, Muraih JK, Mintzer E, Taylor S, Palmer M. 2016. Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145. Biochim Biophys Acta 1858:1999–2005. doi:10.1016/j.bbamem.2016.05.020. PubMed DOI

Jung D, Rozek A, Okon M, Hancock RE. 2004. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11:949–957. doi:10.1016/j.chembiol.2004.04.020. PubMed DOI

Muraih JK, Pearson A, Silverman J, Palmer M. 2011. Oligomerization of daptomycin on membranes. Biochim Biophys Acta 1808:1154–1160. doi:10.1016/j.bbamem.2011.01.001. PubMed DOI

Alborn WE Jr, Allen NE, Preston DA. 1991. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother 35:2282–2287. doi:10.1128/AAC.35.11.2282. PubMed DOI PMC

Silverman JA, Perlmutter NG, Shapiro HM. 2003. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544. doi:10.1128/AAC.47.8.2538-2544.2003. PubMed DOI PMC

Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV, Kohl B, Siersma T, Bandow JE, Sahl H-G, Schneider T, Hamoen LW. 2016. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 113:E7077–E7086. doi:10.1073/pnas.1611173113. PubMed DOI PMC

Pogliano J, Pogliano N, Silverman JA. 2012. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504. doi:10.1128/JB.00011-12. PubMed DOI PMC

Zhang T, Muraih JK, Tishbi N, Herskowitz J, Victor RL, Silverman J, Uwumarenogie S, Taylor SD, Palmer M, Mintzer E. 2014. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J Biol Chem 289:11584–11591. doi:10.1074/jbc.M114.554444. PubMed DOI PMC

Zhang TH, Muraih JK, MacCormick B, Silverman J, Palmer M. 2014. Daptomycin forms cation- and size-selective pores in model membranes. Biochim Biophys Acta 1838:2425–2430. doi:10.1016/j.bbamem.2014.05.014. PubMed DOI

Chen YF, Sun TL, Sun Y, Huang HW. 2014. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry 53:5384–5392. doi:10.1021/bi500779g. PubMed DOI PMC

Taylor R, Beriashvili D, Taylor S, Palmer M. 2017. Daptomycin pore formation is restricted by lipid acyl chain composition. ACS Infect Dis 3:797–801. doi:10.1021/acsinfecdis.7b00138. PubMed DOI

Zhang J, Scoten K, Straus SK. 2016. Daptomycin leakage is selective. ACS Infect Dis 2:682–687. doi:10.1021/acsinfecdis.6b00152. PubMed DOI

Lakey JH, Lea EJA. 1986. The role of acyl chain character and other determinants on the bilayer activity of A21978C an acidic lipopeptide antibiotic. Biochim Biophys Acta 859:219–226. doi:10.1016/0005-2736(86)90217-8. PubMed DOI

Raja A, LaBonte J, Lebbos J, Kirkpatrick P. 2003. Daptomycin. Nat Rev Drug Discov 2:943–944. doi:10.1038/nrd1258. PubMed DOI

Taylor SD, Palmer M. 2016. The action mechanism of daptomycin. Bioorg Med Chem 24:6253–6268. doi:10.1016/j.bmc.2016.05.052. PubMed DOI

Muraih JK, Palmer M. 2012. Estimation of the subunit stoichiometry of the membrane-associated daptomycin oligomer by FRET. Biochim Biophys Acta 1818:1642–1647. doi:10.1016/j.bbamem.2012.02.019. PubMed DOI

Muraih JK, Harris J, Taylor SD, Palmer M. 2012. Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta 1818:673–678. doi:10.1016/j.bbamem.2011.10.027. PubMed DOI

Te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. 2016. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front Cell Dev Biol 4:29. doi:10.3389/fcell.2016.00029. PubMed DOI PMC

Sava L, Pillai S, More U, Sontakke A. 2005. Serum calcium measurement: total versus free (ionized) calcium. Indian J Clin Biochem 20:158–161. doi:10.1007/BF02867418. PubMed DOI PMC

Dvorchik BH, Brazier D, DeBruin MF, Arbeit RD. 2003. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 47:1318–1323. doi:10.1128/AAC.47.4.1318-1323.2003. PubMed DOI PMC

Benvenuto M, Benziger DP, Yankelev S, Vigliani G. 2006. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50:3245–3249. doi:10.1128/AAC.00247-06. PubMed DOI PMC

Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55. doi:10.1093/cid/ciq146. PubMed DOI

Benson CA, Beaudette F, Trenholm G. 1987. Comparative in-vitro activity of LY146032 a new peptolide, with vancomycin and eight other agents against Gram-positive organisms. J Antimicrob Chemother 20:191–196. PubMed

Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M. 2010. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48:1584–1591. doi:10.1128/JCM.01831-09. PubMed DOI PMC

Tan TY, Ng LSY, Kwang LL. 2007. Evaluation of disc susceptibility tests performed directly from positive blood cultures. J Clin Pathol 61:343–346. doi:10.1136/jcp.2007.050757. PubMed DOI

Yang Y, Xiang Y, Xu M. 2015. From red to green: the propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci Rep 5:18583. doi:10.1038/srep18583. PubMed DOI PMC

Zaritsky A, Kihara M, Macnab RM. 1981. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol 63:215–231. doi:10.1007/BF01870983. PubMed DOI

Malinsky J, Tanner W, Opekarova M. 2016. Transmembrane voltage: potential to induce lateral microdomains. Biochim Biophys Acta 1861:806–811. doi:10.1016/j.bbalip.2016.02.012. PubMed DOI

Grassi L, Di Luca M, Maisetta G, Rinaldi AC, Esin S, Trampuz A, Batoni G. 2017. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front Microbiol 8:1917. doi:10.3389/fmicb.2017.01917. PubMed DOI PMC

Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J, Versées W, Hofkens J, Jansen M, Fauvart M, Michiels J. 2015. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell 59:9–21. doi:10.1016/j.molcel.2015.05.011. PubMed DOI

Prax M, Mechler L, Weidenmaier C, Bertram R. 2016. Glucose augments killing efficiency of daptomycin challenged Staphylococcus aureus persisters. PLoS One 11:e0150907. doi:10.1371/journal.pone.0150907. PubMed DOI PMC

Rubinchik E, Schneider T, Elliott M, Scott WR, Pan J, Anklin C, Yang H, Dugourd D, Muller A, Gries K, Straus SK, Sahl HG, Hancock RE. 2011. Mechanism of action and limited cross-resistance of new lipopeptide MX-2401. Antimicrob Agents Chemother 55:2743–2754. doi:10.1128/AAC.00170-11. PubMed DOI PMC

Palacios LE, Wang T. 2005. Egg-yolk lipid fractionation and lecithin characterization. J Am Oil Chem Soc 82:571–578. doi:10.1007/s11746-005-1111-4. DOI

Hachmann AB, Angert ER, Helmann JD. 2009. Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Chemother 53:1598–1609. doi:10.1128/AAC.01329-08. PubMed DOI PMC

Kreutzberger MA, Pokorny A, Almeida PF. 2017. Daptomycin-phosphatidylglycerol domains in lipid membranes. Langmuir 33:13669–13679. doi:10.1021/acs.langmuir.7b01841. PubMed DOI PMC

Klapperstück T, Glanz D, Klapperstuck M, Wohlrab J. 2009. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytometry A 75:593–608. doi:10.1002/cyto.a.20735. PubMed DOI

Tanner MK, Wellhausen SR. 1998. Flow cytometric detection of fluorescent redistributional dyes for measurement of cell transmembrane potential. Methods Mol Biol 91:85–95. PubMed

Whatmore AM, Chudek JA, Reed RH. 1990. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535. doi:10.1099/00221287-136-12-2527. PubMed DOI

Nicolai C, Sachs F. 2013. Solving ion channel kinetics with the QuB software. Biophys Rev Lett 08:191–211. doi:10.1142/S1793048013300053. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace