Methods for increasing productivity of AC-electrospinning using weir-electrode

. 2024 Oct 14 ; 14 (1) : 24012. [epub] 20241014

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39402383
Odkazy

PubMed 39402383
PubMed Central PMC11473839
DOI 10.1038/s41598-024-75946-5
PII: 10.1038/s41598-024-75946-5
Knihovny.cz E-zdroje

The presented work brings new knowledge in the field of spinning electrodes for AC‑electrospinning technology, which is used for producing nanofibrous structures using a solution of polyvinyl butyral. It presents new types of spinning weir‑electrodes and describes research on the influence of electrode design parameters on the stability of the spinning process and the productivity of nanofiber production. The multistage spinning electrode is presented in the ratio of stages one to five. Research is also focused on the effect of the parameters of the electric signal used as a source for the spinning electrode on spinning stability and productivity. Observed parameters were voltage level, frequency and shape such as sine wave, rectangle wave and modified sine wave. An analysis of the influence of the spinning conditions on the resulting nanofibrous structure was also performed by analyzing results gained by SEM; the defects were investigated mainly. The results of the research presented in the thesis open up new possibilities for follow-up research in the field of AC-electrospinning.

Zobrazit více v PubMed

William, G. I. L. B. E. R. T. De Magnete, Magneticisque Corporibus, et de magno magnete Tellure; Physiologia nova, Plurimis & Argumentis, & Experimentis Demonstrata. London: Peter Short, 1600. in.

Gray, S. II. A letter concerning the electricity of water, from Mr. Stephen Gray to Cromwell Mortimer, M. D. Secr. R. S. Philos. Trans. R. Soc. Lond.37, 227–260 (1997).

X. Part of a letter from Abbè Nollet, of the Royal Academy of Science at Paris, and F. R. S. to Martin Folkes Esq; President of the same, concerning electricity. Phil. Trans. R. Soc. 45, 187–194 (1748).

Boys, C. V. On the Production, Properties, and some suggested Uses of the Finest Threads. Proc. Phys. Soc. London 9, 8 (1887).

Cooley, J. F. Apparatus for electrically dispersing fluids. (1902).

Morton, W. J. Method of dispersing fluids. (1902).

Anton, F. Process and apparatus for preparing artificial threads. (1934).

I. Taylor, G. Disintegration of water drops in an electric field. Proc. Royal Soc. Lond. Ser. Math. Phys. Sci.280, 383–397 (1964).

Taylor, G. I. & Van Dyke, M. D. Electrically driven jets. Proc. Royal Soc. Lond. Math. Phys. Sci.313, 453–475 (1969).

Reneker, D. H. & Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 7, 216–223 (1996).

Cengiz, F. & Jirsak, O. The effect of salt on the roller electrospinning of polyurethane nanofibers. Fibers Polym.10, 177–184 (2009).

Jirsak, O. et al. A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. (2009).

Petras, D. et al. Method for spinning the liquid matrix, device for production of nanofibres through electrostatic spinning of liquid matrix and spinning electrode for such device. (2009).

Ibrahim, H. M. & Klingner, A. A review on electrospun polymeric nanofibers: production parameters and potential applications. Polym. Test.90, 106647 (2020).

Lannutti, J., Reneker, D., Ma, T., Tomasko, D. & Farson, D. Electrospinning for tissue engineering scaffolds. Mater. Sci. Engineering: C. 27, 504–509 (2007).

Electrospun Nanofibers for Energy and Environmental Applications.

Madheswaran, D. et al. Composite yarns with antibacterial nanofibrous sheaths produced by collectorless alternating-current electrospinning for suture applications. J. Appl. Polym. Sci.139, (2022).

Azmil Arif, M. W. et al. Electrospinning of Polyacrylonitrile Nanofibres and Applications in membrane Distillation Technology: a review. Int. J. Nanoelectronics Mater.15, 183–207 (2022).

Li, J., Liu, Y. & Abdelhakim, H. E. Drug delivery applications of Coaxial Electrospun nanofibres in Cancer Therapy. Molecules27, (2022). PubMed PMC

Bendkowska, W. Use of nanotechnology in the textile industry. Przeglad Wlokienniczy 17–21 (2003).

Ngiam, M., Hayes, T. R., Dhara, S. & Su, B. Biomimetic apatite/polycaprolactone (PCL) nanofibres for bone tissue engineering scaffolds. Key Eng. Mater.II, 330–332 (2007).

Owida, A., Xiu, M. M., Wong, C. S. & Morsi, Y. S. Electrospinning of nanofibres for construction of vital organ replacements. in 585–587 doi: (2006). 10.1109/ICONN.2006.340685

Kalayci, V., Ouyang, M. & Graham, K. Polymeric nanofibres in high efficiency filtration applications. Filtration. 6, 286–293 (2006).

Lawson, C., Sivan, M., Pokorny, P., Stanishevsky, A. & Lukáš, D. Poly(ϵ-Caprolactone) nanofibers for Biomedical Scaffolds by High-Rate Alternating Current Electrospinning. in 1 1289–1294 (2016).

Wei, L., Sun, R., Liu, C., Xiong, J. & Qin, X. Mass production of nanofibers from needleless electrospinning by a novel annular spinneret. Mater. Design. 179, 107885 (2019).

Wei, L. et al. Experimental investigation of process parameters for the filtration property of nanofiber membrane fabricated by needleless electrospinning apparatus. J. Ind. Text.50, 1528–1541 (2021).

Wei, L. et al. Process investigation of nanofiber diameter based on linear needleless spinneret by response surface methodology. Polym. Test.Bold">110, 107577 (2022).

Wei, L. et al. Multiple-jet needleless Electrospinning Approach via a Linear Flume Spinneret. Polymers. 11, 2052 (2019). PubMed PMC

Homer, W. J. A. et al. Assessment of thermally stabilized electrospun poly(vinyl alcohol) materials as cell permeable membranes for a novel blood salvage device. Biomaterials Adv.144, 213197 (2023). PubMed

Blanquer, A. et al. A novel bifunctional multilayered nanofibrous membrane combining polycaprolactone and poly (vinyl alcohol) enriched with platelet lysate for skin wound healing. Nanoscale. 10.1039/d3nr04705a (2024). PubMed

Kingham, P. T. & Pachter, L. H. Colonic Anastomotic Leak: risk factors, diagnosis, and treatment. J. Am. Coll. Surg.208, 269 (2009). PubMed

Qu, H., Liu, Y. & Bi, D. Clinical risk factors for anastomotic leakage after laparoscopic anterior resection for rectal cancer: a systematic review and meta-analysis. Surg. Endosc. 29, 3608–3617 (2015). PubMed

Meyer, J. et al. Reducing anastomotic leak in colorectal surgery: the old dogmas and the new challenges. World J. Gastroenterol.25, 5017–5025 (2019). PubMed PMC

Klicova, M. et al. Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability. Mater. Lett.263, (2020).

Rosendorf, J. et al. Double-layered nanofibrous patch for prevention of anastomotic leakage and peritoneal adhesions, experimental study. Vivo. 35, 731–741 (2021). PubMed PMC

Valtera, J. et al. Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Sci. Rep.9, (2019). PubMed PMC

Beran, J. et al. A linear fibre formation with a case of polymeric nanofibres enveloping the supporting linear formation constituting the core, the method and equipment for its production. (2017).

Skrivanek, J. et al. Production of modified Composite Nanofiber yarns with functional particles. ACS Omega. 8, 1114–1120 (2023). PubMed PMC

Homoláč, J., Jašková, D. & Valtera J. Candle Filter. (2021).

Madheswaran, D. et al. Braided threads with AC electrospun nanofibers for hygienic and medical applications - production and properties. in 252–257 doi: (2021). 10.37904/nanocon.2021.4355

Kessick, R., Fenn, J. & Tepper, G. The use of AC potentials in electrospraying and electrospinning processes. Polymer. 45, 2981–2984 (2004).

Sarkar, S., Deevi, S. & Tepper, G. Biased AC electrospinning of aligned polymer nanofibers. Macromol. Rapid Commun.28, 1034–1039 (2007).

Maheshwari, S. & Chang, H. C. Assembly of Multi-stranded Nanofiber threads through AC Electrospinning. Adv. Mater.Bold">21, 349–354 (2009).

Pokorny, P. et al. Alternating current electrospinning method for preparation of nanofibrous materials. in 302–304 (2013).

Pokorny, P. et al. New variant of electrospinning: a collector-less method. in (2013).

Lukas, D. et al. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys.16, (2014). PubMed

KOCIS, L. et al. Method for production of polymeric nanofibers by spinning of solution or melt of polymer in electric field, and a linear formation from polymeric nanofibers prepared by this method. (2019).

Qin, M. et al. Electrospun polyvinyl butyral/berberine membranes for antibacterial air filtration. Mater. Letters: X. 10, 100074 (2021).

Lou, Z. et al. Electrospun PVB/AVE NMs as mask filter layer for win-win effects of filtration and antibacterial activity. J. Membr. Sci.672, 121473 (2023). PubMed PMC

Kuželová Košt’áková, E. et al. Electrospun Polyvinyl Butyral Nanofibers Loaded with Bismuth Oxide nanoparticles for X-ray shielding. ACS Appl. Nano Mater.6, 5242–5254 (2023).

Kalous, T., Holec, P., Jirkovec, R., Lukas, D. & Chvojka, J. Improved spinnability of PA 6 solutions using AC electrospinning. Mater. Lett.283, 128761 (2021).

Holec, P., Kalous, T., Pokorny, P., Batka, O. & Skrivanek, J. ALTERNATING CURRENT ELECTROSPINNING OF PA 6 USING ADDITIVES IN FORM OF OXOACIDS. in 143–147 doi: (2021). 10.37904/nanocon.2021.4329

Kalous, T. et al. The optimization of Alternating Current Electrospun PA 6 solutions using a visual analysis system. Polymers. 13, 2098 (2021). PubMed PMC

Holec, P. et al. The potential for the Direct and Alternating Current-Driven Electrospinning of Polyamides. Nanomaterials. 12, 665 (2022). PubMed PMC

Sivan, M. et al. Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: a comparative study. Surf. Coat. Technol.399, 126203 (2020).

Sivan, M. et al. AC electrospinning: impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater. Today Chem.26, 101025 (2022).

Paulett, K. et al. Effect of nanocrystalline cellulose addition on needleless alternating current electrospinning and properties of nanofibrous polyacrylonitrile meshes. J. Appl. Polym. Sci.135, (2018).

Mikeš, P. et al. The Mass Production of Lignin Fibres by means of needleless Electrospinning. J. Polym. Environ.10.1007/s10924-020-02029-7 (2021).

Balogh, A. et al. Alternating current electrospinning for preparation of fibrous drug delivery systems. Int. J. Pharm.495, 75–80 (2015). PubMed

Farkas, B. Corona alternating current electrospinning_ a combined approach for increasing the productivity of electrospinning. Int. J. Pharm. (2019). PubMed

Goswami, B. C. Developments in spunbonding and meltblown nonwoven structures. 363 (25 pages). (1990).

Dutton, K. C. Overview and analysis of the meltblown process and parameters. J. Text. Appar. Technol. Manage.6, (2009).

Drabek, J. & Zatloukal, M. Meltblown technology for production of polymeric microfibers/nanofibers: a review. Phys. Fluids. 31, 091301 (2019).

Bhat, G. S., Malkan, S. R. & Islam, S. Chapter 6 - Spunbond and meltblown web formation. in Handbook of Nonwovens (Second Edition) (ed. Russell, S. J.) 217–278Woodhead Publishing, doi: (2022). 10.1016/B978-0-12-818912-2.00001-X

Das, M. et al. Aligning TiO2 nanofiber for high ionic conductivity in cellulose acetate gel electrolytes. Mater. Chem. Phys.314, (2024).

Zhang, M. et al. Aligned nanofibers incorporated composite solid electrolyte for high-sensitivity oxygen sensing at medium temperatures. J. Mater. Sci. Technol.181, 189–197 (2024).

Talib Al-Sudani, B. et al. A novel antioxidant and antimicrobial food packaging based on Eudragit ®/collagen electrospun nanofiber incorporated with bitter orange peel essential oil. LWT 193, (2024).

de Barros, H. E. A. et al. Development of poly(vinyl alcohol) nanofibers incorporated with aqueous plant extracts by solution blow spinning and their application as strawberry coatings. J. Food Eng.363, (2024).

Do Pham, D. D. et al. Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci. Rep.11, 17688 (2021). PubMed PMC

Arumugam, M. et al. Multifunctional silk fibroin and cellulose acetate composite nanofibers incorporated with palladium and platinum nanoparticles for enhanced wound healing: comprehensive characterization and in vivo assessment. Colloids Surf., a684, (2024).

Lyons, J. & Ko, F. Feature article: Melt Electrospinning of polymers: a review. Polym. News. 30, 170–178 (2005).

Kong, C. S., Jo, K. J., Jo, N. K. & Kim, H. S. Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning. Polym. Eng. Sci.49, 391–396 (2009).

Morikawa, K. et al. Melt Electrospinning Polyethylene fibers in Inert Atmosphere. Macromol. Mater. Eng.305, 2000106 (2020).

Reznik, S. N., Yarin, A. L., Zussman, E. & Bercovici, L. Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys. Fluids. 18, 062101 (2006).

Song, T., Zhang, Y. Z. & Zhou, T. J. Fabrication of magnetic composite nanofibers of poly(ε-caprolactone) with FePt nanoparticles by coaxial electrospinning. J. Magn. Magn. Mater.303, e286–e289 (2006).

Bazilevsky, A. V., Yarin, A. L. & Megaridis, C. M. Co-electrospinning of core – Shell fibers using a single-nozzle technique. Langmuir. 23, 2311–2314 (2007). PubMed

Moghe, A. K. & Gupta, P. B. S. Co-axial Electrospinning for Nanofiber structures: Preparation and Applications. Polym. Rev.48, 353–377 (2008).

Liao, I., Chew, S. & Leong, K. Aligned core–shell nanofibers delivering bioactive proteins. Nanomedicine. 1, 465–471 (2006). PubMed

Vysloužilová, L. et al. Needleless coaxial electrospinning: a novel approach to mass production of coaxial nanofibers. Int. J. Pharm.516, 293–300 (2017). PubMed

Skrivanek, J. et al. Design of electrode for coaxial electrospinning. in 303–307 (2016).

Souček, J., Valtera, J. & Kalous, T. Electrode for continuous production of composite nanofiber material using ac-electrospinning method. 2017-October 378–383 (2018).

Beran, J., Lukáš, D., Pokorný, P., Kalous, T. & Valtera, J. A method of producing polymer nanofibres by electric or electrostatic spinning of a polymer solution or melt, a spinning electrode for this method, and a device for the production of polymer nanofibres fitted with at least one such spinning electrode. (2019).

Beran, J. et al. Method for producing polymeric nanofibers by electrospinning a polymer solution or melt, a spinning electrode for performing the method and a device for producing polymeric nanofibers equipped with at least one such spinning electrode. (2020).

Lukáš, D. et al. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century). Text. Prog.41, 59–140 (2009).

Farkas, B., Balogh, A., Farkas, A., Marosi, G. & Nagy, Z. K. Frequency and waveform dependence of alternating current electrospinning and their uses for drug dissolution enhancement. Int. J. Pharm.586, 119593 (2020). PubMed

Sivan, M., Madheswaran, D., Valtera, J., Kostakova, E. K. & Lukas, D. Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater. Design. 213, 110308 (2022).

Kalous, T. et al. The effect of frequency change on the alternating current electrospinning of polyamide 6 and its productivity. J. Environ. Chem. Eng.11, 109543 (2023).

Malara, A. Environmental concerns on the use of the electrospinning technique for the production of polymeric micro/nanofibers. Sci. Rep.14, 8293 (2024). PubMed PMC

Yener, F. & Yalcinkaya, B. Electrospinning of polyvinyl butyral in different solvents. e-Polymers 13, (2013).

Green Electrospinning. Making Electrospinning Environmentally Friendly. AZoNano (2023). https://www.azonano.com/article.aspx?ArticleID=6540

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...