• This record comes from PubMed

Production of Modified Composite Nanofiber Yarns with Functional Particles

. 2023 Jan 10 ; 8 (1) : 1114-1120. [epub] 20221222

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

The study focused on the production of modified composite nanofiber yarns with fine functional particles. A device that incorporates fine functional particles into a nanofiber yarn wrapper was specially developed, which ensures the continuous production of modified yarn. It was demonstrated during the study that the specially designed equipment could be used effectively for incorporating fine functional particles into the nanofiber packaging, thus creating a unique yarn with high application potential. The use of particles with dimensions of just tens of micrometers results in the uneven flow of particles inside the chamber and the uneven supply of particles to the composite yarn. The study also determined that the number of particles incorporated into the composite yarn is affected by the particle concentration and the variation of the vortex velocity ratios in the chamber. During testing, it was also found that the nanofiber sheet of the composite yarn improves the mechanical properties of the produced yarn. In addition, the study included the semi-industrial production of a composite filter candle, which can be used for the treatment of fluids, especially air and water.

See more in PubMed

Maria Leena M.; Vimala Bharathi S. K.; Moses J. A.; Anandharamakrishnan C.. Potential Applications of Nanofibers in Beverage Industry. In Nanoengineering in the Beverage Industry; Grumezescu A. M., Holban A. M., Eds.; Academic Press, 2020; pp 333–368.

Rashid T. U.; Gorga R. E.; Krause W. E. Mechanical Properties of Electrospun Fibers-A Critical Review. Adv. Eng. Mater. 2021, 23, 2100153.10.1002/adem.202100153. DOI

Valtera J.; Kalous T.; Pokorny P.; Batka O.; Bilek M.; Chvojka J.; Mikes P.; Kostakova E. K.; Zabka P.; Ornstova J.; Beran J.; Stanishevsky A.; Lukas D. Fabrication of Dual-Functional Composite Yarns with a Nanofibrous Envelope Using High Throughput AC Needleless and Collectorless Electrospinning. Sci. Rep. 2019, 9, 1801.10.1038/s41598-019-38557-z. PubMed DOI PMC

Zhou Y.; He J.; Wang H.; Qi K.; Ding B.; Cui S. Carbon Nanofiber Yarns Fabricated from Co-Electrospun Nanofibers. Mater. Des. 2016, 95, 591–598. 10.1016/j.matdes.2016.01.132. DOI

Liu C.-K.; He H.-J.; Sun R.-J.; Feng Y.; Wang Q. Preparation of Continuous Nanofiber Core-Spun Yarn by a Novel Covering Method. Mater. Des. 2016, 112, 456–461. 10.1016/j.matdes.2016.09.081. DOI

Pokorny P.; Kostakova E.; Sanetrnik F.; Mikes P.; Chvojka J.; Kalous T.; Bilek M.; Pejchar K.; Valtera J.; Lukas D. Effective AC Needleless and Collectorless Electrospinning for Yarn Production. Phys. Chem. Chem. Phys. 2014, 16, 26816–26822. 10.1039/C4CP04346D. PubMed DOI

Beran J.; Valtera J.; BILEK M.; SKRIVANEK J.; BATKA O.; Lukas D.; Pokorny P.; KALOUS T.; SOUKUPOVA J.; Kostakova E. K.. Method for Producing Polymeric Nanofibers by Electrospinning a Polymer Solution or Melt, a Spinning Electrode for Performing the Method and a Device for Producing Polymeric Nanofibers Equipped with at Least One Such Spinning Electrode. EP 3394328 B1, April 15, 2020.

Yang Y.; Zhao Y.; Quan Z.; Zhang H.; Qin X.; Wang R.; Yu J. An Efficient Hybrid Strategy for Composite Yarns of Micro-/Nano-Fibers. Mater. Des. 2019, 184, 108196.10.1016/j.matdes.2019.108196. DOI

Tao X.; Zhou Y.; Qi K.; Guo C.; Dai Y.; He J.; Dai Z. Wearable Textile Triboelectric Generator Based on Nanofiber Core-Spun Yarn Coupled with Electret Effect. J. Colloid Interface Sci. 2022, 608, 2339–2346. 10.1016/j.jcis.2021.10.151. PubMed DOI

Yan T.; Shi Y.; Zhuang H.; Lin Y.; Lu D.; Cao S.; Zhu L. Electrospinning Mechanism of Nanofiber Yarn and Its Multiscale Wrapping Yarn. Polymers 2021, 13, 3189.10.3390/polym13183189. PubMed DOI PMC

Kong B.; Mi S. Electrospun Scaffolds for Corneal Tissue Engineering: A Review. Materials 2016, 9, 614.10.3390/ma9080614. PubMed DOI PMC

Liu S.; Qin S.; He M.; Zhou D.; Qin Q.; Wang H. Current Applications of Poly(Lactic Acid) Composites in Tissue Engineering and Drug Delivery. Compos. Part B Eng. 2020, 199, 108238.10.1016/j.compositesb.2020.108238. DOI

Jirkovec R.; Kalous T.; Chvojka J. The Modification of the Wetting of Polycaprolactone Nanofibre Layers via Alternating Current Spinning. Mater. Des. 2021, 210, 110096.10.1016/j.matdes.2021.110096. DOI

Bat’ka O.; Skřivánek J.. Influence of Electrode Position on the Electrospinning Process. Proceedings 11th International Conference on Nanomaterials - Research & Application, 2020; Vol. 2020-October, pp 226–231.

Richard A. S.; Verma R. S. Bioactive Nano Yarns as Surgical Sutures for Wound Healing. Mater. Sci. Eng. C 2021, 128, 112334.10.1016/j.msec.2021.112334. PubMed DOI

McCarthy A.; Avegnon K. L. M.; Holubeck P. A.; Brown D.; Karan A.; Sharma N. S.; John J. V.; Weihs S.; Ley J.; Xie J. Electrostatic Flocking of Salt-Treated Microfibers and Nanofiber Yarns for Regenerative Engineering. Mater. Today Bio 2021, 12, 100166.10.1016/j.mtbio.2021.100166. PubMed DOI PMC

Wu S.; Liu P.; Zhang Y.; Zhang H.; Qin X. Flexible and Conductive Nanofiber-Structured Single Yarn Sensor for Smart Wearable Devices. Sens. Actuators, B 2017, 252, 697–705. 10.1016/j.snb.2017.06.062. DOI

Yu W.; Li X.; He J.; Chen Y.; Qi L.; Yuan P.; Ou K.; Liu F.; Zhou Y.; Qin X. Graphene Oxide-Silver Nanocomposites Embedded Nanofiber Core-Spun Yarns for Durable Antibacterial Textiles. J. Colloid Interface Sci. 2021, 584, 164–173. 10.1016/j.jcis.2020.09.092. PubMed DOI

Yu X.; Li C.; Tian H.; Yuan L.; Xiang A.; Li J.; Wang C.; Rajulu A. V. Hydrophobic Cross-Linked Zein-Based Nanofibers with Efficient Air Filtration and Improved Moisture Stability. Chem. Eng. J. 2020, 396, 125373.10.1016/j.cej.2020.125373. DOI

Sbardella L.; Comas J.; Fenu A.; Rodriguez-Roda I.; Weemaes M. Advanced Biological Activated Carbon Filter for Removing Pharmaceutically Active Compounds from Treated Wastewater. Sci. Total Environ. 2018, 636, 519–529. 10.1016/j.scitotenv.2018.04.214. PubMed DOI

Fahimirad S.; Fahimirad Z.; Sillanpää M. Efficient Removal of Water Bacteria and Viruses Using Electrospun Nanofibers. Sci. Total Environ. 2021, 751, 141673.10.1016/j.scitotenv.2020.141673. PubMed DOI PMC

Hua Y.; Li Y.; Ji Z.; Cui W.; Wu Z.; Fan J.; Liu Y. Dual-Bionic, Fluffy, and Flame Resistant Polyamide-Imide Ultrafine Fibers for High-Temperature Air Filtration. Chem. Eng. J. 2023, 452, 139168.10.1016/j.cej.2022.139168. DOI

Aydin-Aytekin D.; Gezmis-Yavuz E.; Buyukada-Kesici E.; Elif Cansoy C.; Alp K.; Koseoglu-Imer D. Y. Fabrication and Characterization of Multifunctional Nanoclay and TiO2 Embedded Polyamide Electrospun Nanofibers and Their Applications at Indoor Air Filtration. Mater. Sci. Eng. B 2022, 279, 115675.10.1016/j.mseb.2022.115675. DOI

Shen Q.-D.Preparation, Structure and Properties of Fluorine-containing Polymers. In Dielectric Polymer Materials for High-Density Energy Storage; Dang Z.-M., Ed.; Plastics Design Library; William Andrew Publishing, 2018, pp 59–102.10.1016/B978-0-12-813215-9.00003-8. DOI

Klicova M.; Klapstova A.; Chvojka J.; Koprivova B.; Jencova V.; Horakova J. Novel Double-Layered Planar Scaffold Combining Electrospun PCL Fibers and PVA Hydrogels with High Shape Integrity and Water Stability. Mater. Lett. 2020, 263, 127281.10.1016/j.matlet.2019.127281. DOI

Yao T.; Baker M. B.; Moroni L. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials 2020, 10, 887.10.3390/nano10050887. PubMed DOI PMC

Jiang Y.; Ma D.; Ji T.; Sameen D. E.; Ahmed S.; Li S.; Liu Y. Long-Term Antibacterial Effect of Electrospun Polyvinyl Alcohol/Polyacrylate Sodium Nanofiber Containing Nisin-Loaded Nanoparticles. Nanomaterials 2020, 10, 1803.10.3390/nano10091803. PubMed DOI PMC

Thamer B. M.; Aldalbahi A.; Moydeen A M.; Rahaman M.; El-Newehy M. H. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers 2021, 13, 20.10.3390/polym13010020. PubMed DOI PMC

Pelipenko J.; Kocbek P.; Kristl J. Critical Attributes of Nanofibers: Preparation, Drug Loading, and Tissue Regeneration. Int. J. Pharm. 2015, 484, 57–74. 10.1016/j.ijpharm.2015.02.043. PubMed DOI

Koranne M.Winding package parameters. In Fundamentals of Yarn Winding; Koranne M., Ed.; Woodhead Publishing India, 2013, pp 66–99.

Newest 20 citations...

See more in
Medvik | PubMed

Methods for increasing productivity of AC-electrospinning using weir-electrode

. 2024 Oct 14 ; 14 (1) : 24012. [epub] 20241014

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...