Production of Modified Composite Nanofiber Yarns with Functional Particles
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
36643480
PubMed Central
PMC9835156
DOI
10.1021/acsomega.2c06468
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The study focused on the production of modified composite nanofiber yarns with fine functional particles. A device that incorporates fine functional particles into a nanofiber yarn wrapper was specially developed, which ensures the continuous production of modified yarn. It was demonstrated during the study that the specially designed equipment could be used effectively for incorporating fine functional particles into the nanofiber packaging, thus creating a unique yarn with high application potential. The use of particles with dimensions of just tens of micrometers results in the uneven flow of particles inside the chamber and the uneven supply of particles to the composite yarn. The study also determined that the number of particles incorporated into the composite yarn is affected by the particle concentration and the variation of the vortex velocity ratios in the chamber. During testing, it was also found that the nanofiber sheet of the composite yarn improves the mechanical properties of the produced yarn. In addition, the study included the semi-industrial production of a composite filter candle, which can be used for the treatment of fluids, especially air and water.
See more in PubMed
Maria Leena M.; Vimala Bharathi S. K.; Moses J. A.; Anandharamakrishnan C.. Potential Applications of Nanofibers in Beverage Industry. In Nanoengineering in the Beverage Industry; Grumezescu A. M., Holban A. M., Eds.; Academic Press, 2020; pp 333–368.
Rashid T. U.; Gorga R. E.; Krause W. E. Mechanical Properties of Electrospun Fibers-A Critical Review. Adv. Eng. Mater. 2021, 23, 2100153.10.1002/adem.202100153. DOI
Valtera J.; Kalous T.; Pokorny P.; Batka O.; Bilek M.; Chvojka J.; Mikes P.; Kostakova E. K.; Zabka P.; Ornstova J.; Beran J.; Stanishevsky A.; Lukas D. Fabrication of Dual-Functional Composite Yarns with a Nanofibrous Envelope Using High Throughput AC Needleless and Collectorless Electrospinning. Sci. Rep. 2019, 9, 1801.10.1038/s41598-019-38557-z. PubMed DOI PMC
Zhou Y.; He J.; Wang H.; Qi K.; Ding B.; Cui S. Carbon Nanofiber Yarns Fabricated from Co-Electrospun Nanofibers. Mater. Des. 2016, 95, 591–598. 10.1016/j.matdes.2016.01.132. DOI
Liu C.-K.; He H.-J.; Sun R.-J.; Feng Y.; Wang Q. Preparation of Continuous Nanofiber Core-Spun Yarn by a Novel Covering Method. Mater. Des. 2016, 112, 456–461. 10.1016/j.matdes.2016.09.081. DOI
Pokorny P.; Kostakova E.; Sanetrnik F.; Mikes P.; Chvojka J.; Kalous T.; Bilek M.; Pejchar K.; Valtera J.; Lukas D. Effective AC Needleless and Collectorless Electrospinning for Yarn Production. Phys. Chem. Chem. Phys. 2014, 16, 26816–26822. 10.1039/C4CP04346D. PubMed DOI
Beran J.; Valtera J.; BILEK M.; SKRIVANEK J.; BATKA O.; Lukas D.; Pokorny P.; KALOUS T.; SOUKUPOVA J.; Kostakova E. K.. Method for Producing Polymeric Nanofibers by Electrospinning a Polymer Solution or Melt, a Spinning Electrode for Performing the Method and a Device for Producing Polymeric Nanofibers Equipped with at Least One Such Spinning Electrode. EP 3394328 B1, April 15, 2020.
Yang Y.; Zhao Y.; Quan Z.; Zhang H.; Qin X.; Wang R.; Yu J. An Efficient Hybrid Strategy for Composite Yarns of Micro-/Nano-Fibers. Mater. Des. 2019, 184, 108196.10.1016/j.matdes.2019.108196. DOI
Tao X.; Zhou Y.; Qi K.; Guo C.; Dai Y.; He J.; Dai Z. Wearable Textile Triboelectric Generator Based on Nanofiber Core-Spun Yarn Coupled with Electret Effect. J. Colloid Interface Sci. 2022, 608, 2339–2346. 10.1016/j.jcis.2021.10.151. PubMed DOI
Yan T.; Shi Y.; Zhuang H.; Lin Y.; Lu D.; Cao S.; Zhu L. Electrospinning Mechanism of Nanofiber Yarn and Its Multiscale Wrapping Yarn. Polymers 2021, 13, 3189.10.3390/polym13183189. PubMed DOI PMC
Kong B.; Mi S. Electrospun Scaffolds for Corneal Tissue Engineering: A Review. Materials 2016, 9, 614.10.3390/ma9080614. PubMed DOI PMC
Liu S.; Qin S.; He M.; Zhou D.; Qin Q.; Wang H. Current Applications of Poly(Lactic Acid) Composites in Tissue Engineering and Drug Delivery. Compos. Part B Eng. 2020, 199, 108238.10.1016/j.compositesb.2020.108238. DOI
Jirkovec R.; Kalous T.; Chvojka J. The Modification of the Wetting of Polycaprolactone Nanofibre Layers via Alternating Current Spinning. Mater. Des. 2021, 210, 110096.10.1016/j.matdes.2021.110096. DOI
Bat’ka O.; Skřivánek J.. Influence of Electrode Position on the Electrospinning Process. Proceedings 11th International Conference on Nanomaterials - Research & Application, 2020; Vol. 2020-October, pp 226–231.
Richard A. S.; Verma R. S. Bioactive Nano Yarns as Surgical Sutures for Wound Healing. Mater. Sci. Eng. C 2021, 128, 112334.10.1016/j.msec.2021.112334. PubMed DOI
McCarthy A.; Avegnon K. L. M.; Holubeck P. A.; Brown D.; Karan A.; Sharma N. S.; John J. V.; Weihs S.; Ley J.; Xie J. Electrostatic Flocking of Salt-Treated Microfibers and Nanofiber Yarns for Regenerative Engineering. Mater. Today Bio 2021, 12, 100166.10.1016/j.mtbio.2021.100166. PubMed DOI PMC
Wu S.; Liu P.; Zhang Y.; Zhang H.; Qin X. Flexible and Conductive Nanofiber-Structured Single Yarn Sensor for Smart Wearable Devices. Sens. Actuators, B 2017, 252, 697–705. 10.1016/j.snb.2017.06.062. DOI
Yu W.; Li X.; He J.; Chen Y.; Qi L.; Yuan P.; Ou K.; Liu F.; Zhou Y.; Qin X. Graphene Oxide-Silver Nanocomposites Embedded Nanofiber Core-Spun Yarns for Durable Antibacterial Textiles. J. Colloid Interface Sci. 2021, 584, 164–173. 10.1016/j.jcis.2020.09.092. PubMed DOI
Yu X.; Li C.; Tian H.; Yuan L.; Xiang A.; Li J.; Wang C.; Rajulu A. V. Hydrophobic Cross-Linked Zein-Based Nanofibers with Efficient Air Filtration and Improved Moisture Stability. Chem. Eng. J. 2020, 396, 125373.10.1016/j.cej.2020.125373. DOI
Sbardella L.; Comas J.; Fenu A.; Rodriguez-Roda I.; Weemaes M. Advanced Biological Activated Carbon Filter for Removing Pharmaceutically Active Compounds from Treated Wastewater. Sci. Total Environ. 2018, 636, 519–529. 10.1016/j.scitotenv.2018.04.214. PubMed DOI
Fahimirad S.; Fahimirad Z.; Sillanpää M. Efficient Removal of Water Bacteria and Viruses Using Electrospun Nanofibers. Sci. Total Environ. 2021, 751, 141673.10.1016/j.scitotenv.2020.141673. PubMed DOI PMC
Hua Y.; Li Y.; Ji Z.; Cui W.; Wu Z.; Fan J.; Liu Y. Dual-Bionic, Fluffy, and Flame Resistant Polyamide-Imide Ultrafine Fibers for High-Temperature Air Filtration. Chem. Eng. J. 2023, 452, 139168.10.1016/j.cej.2022.139168. DOI
Aydin-Aytekin D.; Gezmis-Yavuz E.; Buyukada-Kesici E.; Elif Cansoy C.; Alp K.; Koseoglu-Imer D. Y. Fabrication and Characterization of Multifunctional Nanoclay and TiO2 Embedded Polyamide Electrospun Nanofibers and Their Applications at Indoor Air Filtration. Mater. Sci. Eng. B 2022, 279, 115675.10.1016/j.mseb.2022.115675. DOI
Shen Q.-D.Preparation, Structure and Properties of Fluorine-containing Polymers. In Dielectric Polymer Materials for High-Density Energy Storage; Dang Z.-M., Ed.; Plastics Design Library; William Andrew Publishing, 2018, pp 59–102.10.1016/B978-0-12-813215-9.00003-8. DOI
Klicova M.; Klapstova A.; Chvojka J.; Koprivova B.; Jencova V.; Horakova J. Novel Double-Layered Planar Scaffold Combining Electrospun PCL Fibers and PVA Hydrogels with High Shape Integrity and Water Stability. Mater. Lett. 2020, 263, 127281.10.1016/j.matlet.2019.127281. DOI
Yao T.; Baker M. B.; Moroni L. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials 2020, 10, 887.10.3390/nano10050887. PubMed DOI PMC
Jiang Y.; Ma D.; Ji T.; Sameen D. E.; Ahmed S.; Li S.; Liu Y. Long-Term Antibacterial Effect of Electrospun Polyvinyl Alcohol/Polyacrylate Sodium Nanofiber Containing Nisin-Loaded Nanoparticles. Nanomaterials 2020, 10, 1803.10.3390/nano10091803. PubMed DOI PMC
Thamer B. M.; Aldalbahi A.; Moydeen A M.; Rahaman M.; El-Newehy M. H. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers 2021, 13, 20.10.3390/polym13010020. PubMed DOI PMC
Pelipenko J.; Kocbek P.; Kristl J. Critical Attributes of Nanofibers: Preparation, Drug Loading, and Tissue Regeneration. Int. J. Pharm. 2015, 484, 57–74. 10.1016/j.ijpharm.2015.02.043. PubMed DOI
Koranne M.Winding package parameters. In Fundamentals of Yarn Winding; Koranne M., Ed.; Woodhead Publishing India, 2013, pp 66–99.