Serum Metabolite Biomarkers for Pancreatic Tumors: Neuroendocrine and Pancreatic Ductal Adenocarcinomas-A Preliminary Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
The publication was financed by Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities.
The publication was financed by Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities.
The equipment used was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project co-sponsored by European Regional Development Fund and Innovative Economy, The National Cohesion Strategy of Poland
The equipment used was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project co-sponsored by European Regional Development Fund and Innovative Economy, The National Cohesion Strategy of Poland
F.A. was funded from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº856620.
F.A. was funded from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº856620.
PubMed
37370852
PubMed Central
PMC10296343
DOI
10.3390/cancers15123242
PII: cancers15123242
Knihovny.cz E-zdroje
- Klíčová slova
- AbsoluteIDQ® p180 kit, Biocrates, C2, acetylcarnitine, acylcarnitine, amino acids, carnitine, glicerophospholipids, glutamine, metabolite, metabolome, neuroendocrine pancreatic tumor (PNET), pancreas, pancreatic ductal adenocarcinoma (PDAC), pancreatic tumor, serotonine,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS: Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS: The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS: The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.
Department of Gastroenterology Pomeranian Medical University in Szczecin 70 204 Szczecin Poland
The Department of Gastrointestinal Surgery Medical University of Silesia 40 752 Katowice Poland
Zobrazit více v PubMed
Cao Y., Zhao R., Guo K., Ren S., Zhang Y., Lu Z., Tian L., Li T., Chen X., Wang Z. Potential Metabolite Biomarkers for Early Detection of Stage-I Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2021;11:744667. doi: 10.3389/fonc.2021.744667. PubMed DOI PMC
Maisonneuve P. Epidemiology and Burden of Pancreatic Cancer. Presse Med. 2019;48:e113–e123. doi: 10.1016/j.lpm.2019.02.030. PubMed DOI
Halbrook C.J., Lyssiotis C.A. Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell. 2017;31:5–19. doi: 10.1016/j.ccell.2016.12.006. PubMed DOI
McGuigan A., Kelly P., Turkington R.C., Jones C., Coleman H.G., McCain R.S. Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Outcomes. World J. Gastroenterol. 2018;24:4846–4861. doi: 10.3748/wjg.v24.i43.4846. PubMed DOI PMC
Qin C., Yang G., Yang J., Ren B., Wang H., Chen G., Zhao F., You L., Wang W., Zhao Y. Metabolism of Pancreatic Cancer: Paving the Way to Better Anticancer Strategies. Mol. Cancer. 2020;19:50. doi: 10.1186/s12943-020-01169-7. PubMed DOI PMC
Zhang X., Shi X., Lu X., Li Y., Zhan C., Akhtar M.L., Yang L., Bai Y., Zhao J., Wang Y., et al. Novel Metabolomics Serum Biomarkers for Pancreatic Ductal Adenocarcinoma by the Comparison of Pre-, Postoperative and Normal Samples. J. Cancer. 2020;11:4641–4651. doi: 10.7150/jca.41250. PubMed DOI PMC
Mayerle J., Kalthoff H., Reszka R., Kamlage B., Peter E., Schniewind B., González Maldonado S., Pilarsky C., Heidecke C.-D., Schatz P., et al. Metabolic Biomarker Signature to Differentiate Pancreatic Ductal Adenocarcinoma from Chronic Pancreatitis. Gut. 2018;67:128–137. doi: 10.1136/gutjnl-2016-312432. PubMed DOI PMC
Stolzenberg-Solomon R., Derkach A., Moore S., Weinstein S.J., Albanes D., Sampson J. Associations between Metabolites and Pancreatic Cancer Risk in a Large Prospective Epidemiological Study. Gut. 2020;69:2008–2015. doi: 10.1136/gutjnl-2019-319811. PubMed DOI PMC
Vincent A., Herman J., Schulick R., Hruban R.H., Goggins M. Pancreatic Cancer. Lancet. 2011;378:607–620. doi: 10.1016/S0140-6736(10)62307-0. PubMed DOI PMC
Zhou Q., Melton D.A. Pancreas Regeneration. Nature. 2018;557:351–358. doi: 10.1038/s41586-018-0088-0. PubMed DOI PMC
Suzuki T., Otsuka M., Seimiya T., Iwata T., Kishikawa T., Koike K. The Biological Role of Metabolic Reprogramming in Pancreatic Cancer. MedComm. 2020;1:302–310. doi: 10.1002/mco2.37. PubMed DOI PMC
Mpilla G.B., Philip P.A., El-Rayes B., Azmi A.S. Pancreatic Neuroendocrine Tumors: Therapeutic Challenges and Research Limitations. World J. Gastroenterol. 2020;26:4036–4054. doi: 10.3748/wjg.v26.i28.4036. PubMed DOI PMC
Rossi R.E., Ciafardini C., Sciola V., Conte D., Massironi S. Chromogranin A in the Follow-up of Gastroenteropancreatic Neuroendocrine Neoplasms: Is It Really Game Over? A Systematic Review and Meta-Analysis. Pancreas. 2018;47:1249–1255. doi: 10.1097/MPA.0000000000001184. PubMed DOI
Malczewska A., Witkowska M., Wójcik-Giertuga M., Kuśnierz K., Bocian A., Walter A., Rydel M., Robek A., Pierzchała S., Malczewska M., et al. Prospective Evaluation of the NETest as a Liquid Biopsy for Gastroenteropancreatic and Bronchopulmonary Neuroendocrine Tumors: An ENETS Center of Excellence Experience. Neuroendocrinology. 2021;111:304–319. doi: 10.1159/000508106. PubMed DOI
Modlin I.M., Kidd M., Falconi M., Filosso P.L., Frilling A., Malczewska A., Toumpanakis C., Valk G., Pacak K., Bodei L., et al. A Multigenomic Liquid Biopsy Biomarker for Neuroendocrine Tumor Disease Outperforms CgA and Has Surgical and Clinical Utility. Ann. Oncol. 2021;32:1425–1433. doi: 10.1016/j.annonc.2021.08.1746. PubMed DOI PMC
Alexandraki K.I., Spyroglou A., Kykalos S., Daskalakis K., Kyriakopoulos G., Sotiropoulos G.C., Kaltsas G.A., Grossman A.B. Changing Biological Behaviour of NETs during the Evolution of the Disease: Progress on Progression. Endocr. Relat. Cancer. 2021;28:R121–R140. doi: 10.1530/ERC-20-0473. PubMed DOI
Guadagno E., D’Avella E., Cappabianca P., Colao A., Del Basso De Caro M. Ki67 in Endocrine Neoplasms: To Count or Not to Count, This Is the Question! A Systematic Review from the English Language Literature. J. Endocrinol. Investig. 2020;43:1429–1445. doi: 10.1007/s40618-020-01275-9. PubMed DOI
Lea D., Gudlaugsson E.G., Skaland I., Lillesand M., Søreide K., Søreide J.A. Digital Image Analysis of the Proliferation Markers Ki67 and Phosphohistone H3 in Gastroenteropancreatic Neuroendocrine Neoplasms: Accuracy of Grading Compared With Routine Manual Hot Spot Evaluation of the Ki67 Index. Appl. Immunohistochem. Mol. Morphol. 2021;29:499–505. doi: 10.1097/PAI.0000000000000934. PubMed DOI PMC
Dambrova M., Makrecka-Kuka M., Kuka J., Vilskersts R., Nordberg D., Attwood M.M., Smesny S., Sen Z.D., Guo A.C., Oler E., et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022;74:506–551. doi: 10.1124/pharmrev.121.000408. PubMed DOI
Wang Y., Chen Y., Guan L., Zhang H., Huang Y., Johnson C.H., Wu Z., Gonzalez F.J., Yu A., Huang P., et al. Carnitine Palmitoyltransferase 1C Regulates Cancer Cell Senescence through Mitochondria-Associated Metabolic Reprograming. Cell Death Differ. 2018;25:735–748. doi: 10.1038/s41418-017-0013-3. PubMed DOI PMC
Fujiwara N., Nakagawa H., Enooku K., Kudo Y., Hayata Y., Nakatsuka T., Tanaka Y., Tateishi R., Hikiba Y., Misumi K., et al. CPT2 Downregulation Adapts HCC to Lipid-Rich Environment and Promotes Carcinogenesis via Acylcarnitine Accumulation in Obesity. Gut. 2018;67:1493–1504. doi: 10.1136/gutjnl-2017-315193. PubMed DOI PMC
Bruls Y.M., de Ligt M., Lindeboom L., Phielix E., Havekes B., Schaart G., Kornips E., Wildberger J.E., Hesselink M.K., Muoio D., et al. Carnitine Supplementation Improves Metabolic Flexibility and Skeletal Muscle Acetylcarnitine Formation in Volunteers with Impaired Glucose Tolerance: A Randomised Controlled Trial. EBioMedicine. 2019;49:318–330. doi: 10.1016/j.ebiom.2019.10.017. PubMed DOI PMC
Askarpour M., Hadi A., Miraghajani M., Symonds M.E., Sheikhi A., Ghaedi E. Beneficial Effects of L-Carnitine Supplementation for Weight Management in Overweight and Obese Adults: An Updated Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2020;151:104554. doi: 10.1016/j.phrs.2019.104554. PubMed DOI
Wu C., Zhu M., Lu Z., Zhang Y., Li L., Li N., Yin L., Wang H., Song W., Xu H. L-Carnitine Ameliorates the Muscle Wasting of Cancer Cachexia through the AKT/FOXO3a/MaFbx Axis. Nutr. Metab. 2021;18:98. doi: 10.1186/s12986-021-00623-7. PubMed DOI PMC
Takagi A., Hawke P., Tokuda S., Toda T., Higashizono K., Nagai E., Watanabe M., Nakatani E., Kanemoto H., Oba N. Serum Carnitine as a Biomarker of Sarcopenia and Nutritional Status in Preoperative Gastrointestinal Cancer Patients. J. Cachexia Sarcopenia Muscle. 2022;13:287–295. doi: 10.1002/jcsm.12906. PubMed DOI PMC
Mochamat, Cuhls H., Marinova M., Kaasa S., Stieber C., Conrad R., Radbruch L., Mücke M. A Systematic Review on the Role of Vitamins, Minerals, Proteins, and Other Supplements for the Treatment of Cachexia in Cancer: A European Palliative Care Research Centre Cachexia Project. J. Cachexia Sarcopenia Muscle. 2017;8:25–39. doi: 10.1002/jcsm.12127. PubMed DOI PMC
Mock-Ohnesorge J., Mock A., Hackert T., Fröhling S., Schenz J., Poschet G., Jäger D., Büchler M.W., Uhle F., Weigand M.A. Perioperative Changes in the Plasma Metabolome of Patients Receiving General Anesthesia for Pancreatic Cancer Surgery. Oncotarget. 2021;12:996–1010. doi: 10.18632/oncotarget.27956. PubMed DOI PMC
Li T., Le A. Glutamine Metabolism in Cancer. Adv. Exp. Med. Biol. 2018;1063:13–32. doi: 10.1007/978-3-319-77736-8_2. PubMed DOI
Dunphy M.P.S., Harding J.J., Venneti S., Zhang H., Burnazi E.M., Bromberg J., Omuro A.M., Hsieh J.J., Mellinghoff I.K., Staton K., et al. In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology. 2018;287:667–675. doi: 10.1148/radiol.2017162610. PubMed DOI PMC
Jiang X., Pei L.-Y., Guo W.-X., Qi X., Lu X.-G. Glutamine Supported Early Enteral Therapy for Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis. Asia Pac. J. Clin. Nutr. 2020;29:253–261. doi: 10.6133/apjcn.202007_29(2).0007. PubMed DOI
Schiliro C., Firestein B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells. 2021;10:1056. doi: 10.3390/cells10051056. PubMed DOI PMC
Chang X., Liu X., Wang H., Yang X., Gu Y. Glycolysis in the Progression of Pancreatic Cancer. Am. J. Cancer Res. 2022;12:861–872. PubMed PMC
Yang J., Ren B., Yang G., Wang H., Chen G., You L., Zhang T., Zhao Y. The Enhancement of Glycolysis Regulates Pancreatic Cancer Metastasis. Cell. Mol. Life Sci. 2020;77:305–321. doi: 10.1007/s00018-019-03278-z. PubMed DOI PMC
Liu C., Deng S., Xiao Z., Lu R., Cheng H., Feng J., Shen X., Ni Q., Wu W., Yu X., et al. Glutamine Is a Substrate for Glycosylation and CA19-9 Biosynthesis through Hexosamine Biosynthetic Pathway in Pancreatic Cancer. Discov. Oncol. 2023;14:20. doi: 10.1007/s12672-023-00628-z. PubMed DOI PMC
Dong S., Zhao Z., Li X., Chen Z., Jiang W., Zhou W. Efficacy of Glutamine in Treating Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis. Front. Nutr. 2022;9:865102. doi: 10.3389/fnut.2022.865102. PubMed DOI PMC
Arutla M., Raghunath M., Deepika G., Jakkampudi A., Murthy H.V.V., Rao G.V., Reddy D.N., Talukdar R. Efficacy of Enteral Glutamine Supplementation in Patients with Severe and Predicted Severe Acute Pancreatitis—A Randomized Controlled Trial. Indian J. Gastroenterol. 2019;38:338–347. doi: 10.1007/s12664-019-00962-7. PubMed DOI
Zhou J., Xue Y., Liu Y., Li X.K., Tong Z.H., Li W.Q. The Effect of Immunonutrition in Patients with Acute Pancreatitis: A Systematic Review and Meta-Analysis. J. Hum. Nutr. Diet. 2021;34:429–439. doi: 10.1111/jhn.12816. PubMed DOI
Zhou S., Jin L.-R., He C. Effects of Imipenem Combined with Glutamine in the Treatment of Severe Acute Pancreatitis with Abdominal Infection in Mainland China: A Meta-Analysis. Rev. Assoc. Med. Bras. 2022;68:395–399. doi: 10.1590/1806-9282.20211127. PubMed DOI
Long N.P., Yoon S.J., Anh N.H., Nghi T.D., Lim D.K., Hong Y.J., Hong S.-S., Kwon S.W. A Systematic Review on Metabolomics-Based Diagnostic Biomarker Discovery and Validation in Pancreatic Cancer. Metabolomics. 2018;14:109. doi: 10.1007/s11306-018-1404-2. PubMed DOI
Xiong Y., Shi C., Zhong F., Liu X., Yang P. LC-MS/MS and SWATH Based Serum Metabolomics Enables Biomarker Discovery in Pancreatic Cancer. Clin. Chim. Acta. 2020;506:214–221. doi: 10.1016/j.cca.2020.03.043. PubMed DOI
Borroto-Escuela D.O., Ambrogini P., Chruścicka B., Lindskog M., Crespo-Ramirez M., Hernández-Mondragón J.C., Perez de la Mora M., Schellekens H., Fuxe K. The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects. Int. J. Mol. Sci. 2021;22:1927. doi: 10.3390/ijms22041927. PubMed DOI PMC
Paredes S., Cantillo S., Candido K.D., Knezevic N.N. An Association of Serotonin with Pain Disorders and Its Modulation by Estrogens. Int. J. Mol. Sci. 2019;20:5729. doi: 10.3390/ijms20225729. PubMed DOI PMC
Stasi C., Sadalla S., Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr. Drug Metab. 2019;20:646–655. doi: 10.2174/1389200220666190725115503. PubMed DOI
Balakrishna P., George S., Hatoum H., Mukherjee S. Serotonin Pathway in Cancer. Int. J. Mol. Sci. 2021;22:1268. doi: 10.3390/ijms22031268. PubMed DOI PMC
Joish V.N., Shah S., Tierce J.C., Patel D., McKee C., Lapuerta P., Zacks J. Serotonin Levels and 1-Year Mortality in Patients with Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. Future Oncol. 2019;15:1397–1406. doi: 10.2217/fon-2018-0960. PubMed DOI
Karmakar S., Lal G. Role of Serotonin Receptor Signaling in Cancer Cells and Anti-Tumor Immunity. Theranostics. 2021;11:5296–5312. doi: 10.7150/thno.55986. PubMed DOI PMC
Sherman S.K., Maxwell J.E., O’Dorisio M.S., O’Dorisio T.M., Howe J.R. Pancreastatin Predicts Survival in Neuroendocrine Tumors. Ann. Surg. Oncol. 2014;21:2971–2980. doi: 10.1245/s10434-014-3728-0. PubMed DOI PMC
Shu X., Zheng W., Yu D., Li H.-L., Lan Q., Yang G., Cai H., Ma X., Rothman N., Gao Y.-T., et al. Prospective Metabolomics Study Identifies Potential Novel Blood Metabolites Associated with Pancreatic Cancer Risk. Int. J. Cancer. 2018;143:2161–2167. doi: 10.1002/ijc.31574. PubMed DOI PMC
Manzo T., Prentice B.M., Anderson K.G., Raman A., Schalck A., Codreanu G.S., Nava Lauson C.B., Tiberti S., Raimondi A., Jones M.A., et al. Accumulation of Long-Chain Fatty Acids in the Tumor Microenvironment Drives Dysfunction in Intrapancreatic CD8+ T Cells. J. Exp. Med. 2020;217:e20191920. doi: 10.1084/jem.20191920. PubMed DOI PMC
Ketavarapu V., Ravikanth V., Sasikala M., Rao G.V., Devi C.V., Sripadi P., Bethu M.S., Amanchy R., Murthy H.V.V., Pandol S.J., et al. Integration of Metabolites from Meta-Analysis with Transcriptome Reveals Enhanced SPHK1 in PDAC with a Background of Pancreatitis. BMC Cancer. 2022;22:792. doi: 10.1186/s12885-022-09816-6. PubMed DOI PMC
Wedekind R., Rothwell J.A., Viallon V., Keski-Rahkonen P., Schmidt J.A., Chajes V., Katzke V., Johnson T., Santucci de Magistris M., Krogh V., et al. Determinants of Blood Acylcarnitine Concentrations in Healthy Individuals of the European Prospective Investigation into Cancer and Nutrition. Clin. Nutr. 2022;41:1735–1745. doi: 10.1016/j.clnu.2022.05.020. PubMed DOI PMC
Feig C., Gopinathan A., Neesse A., Chan D.S., Cook N., Tuveson D.A. The Pancreas Cancer Microenvironment. Clin. Cancer Res. 2012;18:4266–4276. doi: 10.1158/1078-0432.CCR-11-3114. PubMed DOI PMC
Stopa K.B., Kusiak A.A., Szopa M.D., Ferdek P.E., Jakubowska M.A. Pancreatic Cancer and Its Microenvironment—Recent Advances and Current Controversies. Int. J. Mol. Sci. 2020;21:3218. doi: 10.3390/ijms21093218. PubMed DOI PMC
Wei Z., Liu X., Cheng C., Yu W., Yi P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2021;8:603837. doi: 10.3389/fcell.2020.603837. PubMed DOI PMC
Wang W., Cui J., Ma H., Lu W., Huang J. Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front. Oncol. 2021;11:684961. doi: 10.3389/fonc.2021.684961. PubMed DOI PMC
Zang Q., Sun C., Chu X., Li L., Gan W., Zhao Z., Song Y., He J., Zhang R., Abliz Z. Spatially Resolved Metabolomics Combined with Multicellular Tumor Spheroids to Discover Cancer Tissue Relevant Metabolic Signatures. Anal. Chim. Acta. 2021;1155:338342. doi: 10.1016/j.aca.2021.338342. PubMed DOI
Zemanova M., Vecka M., Petruželka L., Staňková B., Žák A., Zeman M. Plasma Phosphatidylcholines Fatty Acids in Men with Squamous Cell Esophageal Cancer: Chemoradiotherapy Improves Abnormal Profile. Med. Sci. Monit. 2016;22:4092–4099. doi: 10.12659/MSM.896799. PubMed DOI PMC
Zang B., Wang W., Wang Y., Li P., Xia T., Liu X., Chen D., Piao H.-L., Qi H., Ma Y. Metabolomic Characterization Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell Carcinoma. Front. Mol. Biosci. 2021;8:721990. doi: 10.3389/fmolb.2021.721990. PubMed DOI PMC
Molendijk J., Kolka C.M., Cairns H., Brosda S., Mohamed A., Shah A.K., Brown I., Hodson M.P., Hennessy T., Liu G., et al. Elevation of Fatty Acid Desaturase 2 in Esophageal Adenocarcinoma Increases Polyunsaturated Lipids and May Exacerbate Bile Acid-Induced DNA Damage. Clin. Transl. Med. 2022;12:e810. doi: 10.1002/ctm2.810. PubMed DOI PMC
Mir S.A., Rajagopalan P., Jain A.P., Khan A.A., Datta K.K., Mohan S.V., Lateef S.S., Sahasrabuddhe N., Somani B.L., Keshava Prasad T.S., et al. LC-MS-Based Serum Metabolomic Analysis Reveals Dysregulation of Phosphatidylcholines in Esophageal Squamous Cell Carcinoma. J. Proteom. 2015;127:96–102. doi: 10.1016/j.jprot.2015.05.013. PubMed DOI
Nishiumi S., Fujigaki S., Kobayashi T., Kojima T., Ito Y., Daiko H., Kato K., Shoji H., Kodama Y., Honda K., et al. Metabolomics-Based Discovery of Serum Biomarkers to Predict the Side-Effects of Neoadjuvant Chemoradiotherapy for Esophageal Squamous Cell Carcinoma. Anticancer Res. 2019;39:519–526. doi: 10.21873/anticanres.13143. PubMed DOI
Ma W., Wang S., Zhang T., Zhang E.Y., Zhou L., Hu C., Yu J.J., Xu G. Activation of Choline Kinase Drives Aberrant Choline Metabolism in Esophageal Squamous Cell Carcinomas. J. Pharm. Biomed. Anal. 2018;155:148–156. doi: 10.1016/j.jpba.2018.03.062. PubMed DOI
Corona G., Cannizzaro R., Miolo G., Caggiari L., De Zorzi M., Repetto O., Steffan A., De Re V. Use of Metabolomics as a Complementary Omic Approach to Implement Risk Criteria for First-Degree Relatives of Gastric Cancer Patients. Int. J. Mol. Sci. 2018;19:750. doi: 10.3390/ijms19030750. PubMed DOI PMC
Jin X., Li H., Li B., Zhang C., He Y. Knockdown and Inhibition of Hydroxytryptamine Receptor 1D Suppress Proliferation and Migration of Gastric Cancer Cells. Biochem. Biophys. Res. Commun. 2022;620:143–149. doi: 10.1016/j.bbrc.2022.06.088. PubMed DOI
Khin P.P., Po W.W., Thein W., Sohn U.D. Apoptotic Effect of Fluoxetine through the Endoplasmic Reticulum Stress Pathway in the Human Gastric Cancer Cell Line AGS. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:537–549. doi: 10.1007/s00210-019-01739-7. PubMed DOI
Niu Q., Li L., Zhang C., Qi C., He Q., Zhu Y. Expression of 5-HT Relates to Stem Cell Marker LGR5 in Patients with Gastritis and Gastric Cancer. Dig. Dis. Sci. 2023;68:1864–1872. doi: 10.1007/s10620-022-07772-6. PubMed DOI PMC
Zou L., Guo L., Zhu C., Lai Z., Li Z., Yang A. Serum Phospholipids Are Potential Biomarkers for the Early Diagnosis of Gastric Cancer. Clin. Chim. Acta. 2021;519:276–284. doi: 10.1016/j.cca.2021.05.002. PubMed DOI
Zou L., Wang L., Guo L., Zhou W., Lai Z., Zhu C., Wu X., Li Z., Yang A. Small Molecules as Potential Biomarkers of Early Gastric Cancer: A Mass Spectrometry Imaging Approach. Clin. Chim. Acta. 2022;534:35–42. doi: 10.1016/j.cca.2022.06.032. PubMed DOI
Uehara T., Kikuchi H., Miyazaki S., Iino I., Setoguchi T., Hiramatsu Y., Ohta M., Kamiya K., Morita Y., Tanaka H., et al. Overexpression of Lysophosphatidylcholine Acyltransferase 1 and Concomitant Lipid Alterations in Gastric Cancer. Ann. Surg. Oncol. 2016;23((Suppl. 2)):S206–S213. doi: 10.1245/s10434-015-4459-6. PubMed DOI
Guo Y., Ren J., Li X., Liu X., Liu N., Wang Y., Li Z. Simultaneous Quantification of Serum Multi-Phospholipids as Potential Biomarkers for Differentiating Different Pathophysiological States of Lung, Stomach, Intestine, and Pancreas. J. Cancer. 2017;8:2191–2204. doi: 10.7150/jca.19128. PubMed DOI PMC
Huang Q., Tan Y., Yin P., Ye G., Gao P., Lu X., Wang H., Xu G. Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics. Cancer Res. 2013;73:4992–5002. doi: 10.1158/0008-5472.CAN-13-0308. PubMed DOI
Okubo H., Ando H., Ishizuka K., Kitagawa R., Okubo S., Saito H., Kokubu S., Miyazaki A., Ikejima K., Shiina S., et al. Carnitine Insufficiency Is Associated with Fatigue during Lenvatinib Treatment in Patients with Hepatocellular Carcinoma. PLoS ONE. 2020;15:e0229772. doi: 10.1371/journal.pone.0229772. PubMed DOI PMC
Padickakudy R., Pereyra D., Offensperger F., Jonas P., Oehlberger L., Schwarz C., Haegele S., Assinger A., Brostjan C., Gruenberger T., et al. Bivalent Role of Intra-Platelet Serotonin in Liver Regeneration and Tumor Recurrence in Humans. J. Hepatol. 2017;67:1243–1252. doi: 10.1016/j.jhep.2017.08.009. PubMed DOI
Niture S., Gyamfi M.A., Kedir H., Arthur E., Ressom H., Deep G., Kumar D. Serotonin Induced Hepatic Steatosis Is Associated with Modulation of Autophagy and Notch Signaling Pathway. Cell Commun. Signal. 2018;16:78. doi: 10.1186/s12964-018-0282-6. PubMed DOI PMC
Yang Q., Yan C., Yin C., Gong Z. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular Carcinoma. Cell. Mol. Gastroenterol. Hepatol. 2017;3:484–499. doi: 10.1016/j.jcmgh.2017.01.002. PubMed DOI PMC
Abdel-Hamid N.M., Shehata D.E., Abdel-Ghany A.A., Ragaa A., Wahid A. Serum Serotonin as Unexpected Potential Marker for Staging of Experimental Hepatocellular Carcinoma. Biomed. Pharmacother. 2016;83:407–411. doi: 10.1016/j.biopha.2016.07.005. PubMed DOI
Mamdouh F., Abdel Alem S., Abdo M., Abdelaal A., Salem A., Rabiee A., Elsisi O. Serum Serotonin as a Potential Diagnostic Marker for Hepatocellular Carcinoma. J. Interferon Cytokine Res. 2019;39:780–785. doi: 10.1089/jir.2019.0088. PubMed DOI
Lai S.-W., Hwang B.-F., Liu C.-S., Liao K.-F. Selective Serotonin Reuptake Inhibitor Use and the Risk of Hepatocellular Carcinoma. Eur. J. Clin. Pharmacol. 2022;78:1197–1198. doi: 10.1007/s00228-022-03306-1. PubMed DOI
Huang Y.-H., Yeh C.-T. Anticancer Effects of Antidepressants in Hepatocellular Carcinoma Cells. Anticancer Res. 2023;43:1201–1206. doi: 10.21873/anticanres.16266. PubMed DOI
Abdel-Razik A., Elhelaly R., Elzehery R., El-Diasty A., Abed S., Elhammady D., Tawfik A. Could Serotonin Be a Potential Marker for Hepatocellular Carcinoma? A Prospective Single-Center Observational Study. Eur. J. Gastroenterol. Hepatol. 2016;28:599–605. doi: 10.1097/MEG.0000000000000569. PubMed DOI
Yu L., Zeng Z., Tan H., Feng Q., Zhou Q., Hu J., Li Y., Wang J., Yang W., Feng J., et al. Significant Metabolic Alterations in Patients with Hepatitis B Virus Replication Observed via Serum Untargeted Metabolomics Shed New Light on Hepatitis B Virus Infection. J. Drug Target. 2022;30:442–449. doi: 10.1080/1061186X.2021.2009841. PubMed DOI
Kwee S.A., Sato M.M., Kuang Y., Franke A., Custer L., Miyazaki K., Wong L.L. [18F]Fluorocholine PET/CT Imaging of Liver Cancer: Radiopathologic Correlation with Tissue Phospholipid Profiling. Mol. Imaging Biol. 2017;19:446–455. doi: 10.1007/s11307-016-1020-3. PubMed DOI PMC
Hall Z., Chiarugi D., Charidemou E., Leslie J., Scott E., Pellegrinet L., Allison M., Mocciaro G., Anstee Q.M., Evan G.I., et al. Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology. 2021;73:1028–1044. doi: 10.1002/hep.31391. PubMed DOI
Hou G., Ding D., Tian T., Dong W., Sun D., Liu G., Yang Y., Zhou W. Metabolomics-Based Classification Reveals Subtypes of Hepatocellular Carcinoma. Mol. Carcinog. 2022;61:989–1001. doi: 10.1002/mc.23455. PubMed DOI
Li Z., Guan M., Lin Y., Cui X., Zhang Y., Zhao Z., Zhu J. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics. Int. J. Mol. Sci. 2017;18:2550. doi: 10.3390/ijms18122550. PubMed DOI PMC
Cotte A.K., Cottet V., Aires V., Mouillot T., Rizk M., Vinault S., Binquet C., de Barros J.-P.P., Hillon P., Delmas D. Phospholipid Profiles and Hepatocellular Carcinoma Risk and Prognosis in Cirrhotic Patients. Oncotarget. 2019;10:2161–2172. doi: 10.18632/oncotarget.26738. PubMed DOI PMC
Ismail I.T., Elfert A., Helal M., Salama I., El-Said H., Fiehn O. Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers. 2020;13:88. doi: 10.3390/cancers13010088. PubMed DOI PMC
Ala M. Tryptophan Metabolites Modulate Inflammatory Bowel Disease and Colorectal Cancer by Affecting Immune System. Int. Rev. Immunol. 2022;41:326–345. doi: 10.1080/08830185.2021.1954638. PubMed DOI
Dahabiyeh L.A., Hudaib F., Hourani W., Darwish W., Abu-Irmaileh B., Deb P.K., Venugopala K.N., Mohanlall V., Chandrashekharappa S., Abu-Dahab R., et al. Mass Spectrometry-Based Metabolomics Approach and in Vitro Assays Revealed Promising Role of 2,3-Dihydroquinazolin-4(1H)-One Derivatives against Colorectal Cancer Cell Lines. Eur. J. Pharm. Sci. 2023;182:106378. doi: 10.1016/j.ejps.2023.106378. PubMed DOI
Huang Y.-W., Lin C.-W., Pan P., Echeveste C.E., Dong A., Oshima K., Yearsley M., Yu J., Wang L.-S. Dysregulated Free Fatty Acid Receptor 2 Exacerbates Colonic Adenoma Formation in Apc Min/+ Mice: Relation to Metabolism and Gut Microbiota Composition. J. Cancer Prev. 2021;26:32–40. doi: 10.15430/JCP.2021.26.1.32. PubMed DOI PMC
Wang X., Wang J., Wang Z., Wang Q., Li H. Dynamic Monitoring of Plasma Amino Acids and Carnitine during Chemotherapy of Patients with Alimentary Canal Malignancies and Its Clinical Value. OncoTargets Ther. 2015;8:1989–1996. doi: 10.2147/OTT.S86562. PubMed DOI PMC
Kannen V., Bader M., Sakita J.Y., Uyemura S.A., Squire J.A. The Dual Role of Serotonin in Colorectal Cancer. Trends Endocrinol. Metab. 2020;31:611–625. doi: 10.1016/j.tem.2020.04.008. PubMed DOI
Mao L., Xin F., Ren J., Xu S., Huang H., Zha X., Wen X., Gu G., Yang G., Cheng Y., et al. 5-HT2B-Mediated Serotonin Activation in Enterocytes Suppresses Colitis-Associated Cancer Initiation and Promotes Cancer Progression. Theranostics. 2022;12:3928–3945. doi: 10.7150/thno.70762. PubMed DOI PMC
Shen Y., Sun M., Zhu J., Wei M., Li H., Zhao P., Wang J., Li R., Tian L., Tao Y., et al. Tissue Metabolic Profiling Reveals Major Metabolic Alteration in Colorectal Cancer. Mol. Omics. 2021;17:464–471. doi: 10.1039/D1MO00022E. PubMed DOI
Zhu P., Lu T., Chen Z., Liu B., Fan D., Li C., Wu J., He L., Zhu X., Du Y., et al. 5-Hydroxytryptamine Produced by Enteric Serotonergic Neurons Initiates Colorectal Cancer Stem Cell Self-Renewal and Tumorigenesis. Neuron. 2022;110:2268–2282.e4. doi: 10.1016/j.neuron.2022.04.024. PubMed DOI
Elmallah M.I.Y., Ortega-Deballon P., Hermite L., Pais-De-Barros J.-P., Gobbo J., Garrido C. Lipidomic Profiling of Exosomes from Colorectal Cancer Cells and Patients Reveals Potential Biomarkers. Mol. Oncol. 2022;16:2710–2718. doi: 10.1002/1878-0261.13223. PubMed DOI PMC
Peng S., Li Y., Huang M., Tang G., Xie Y., Chen D., Hu Y., Yu T., Cai J., Yuan Z., et al. Metabolomics Reveals That CAF-Derived Lipids Promote Colorectal Cancer Peritoneal Metastasis by Enhancing Membrane Fluidity. Int. J. Biol. Sci. 2022;18:1912–1932. doi: 10.7150/ijbs.68484. PubMed DOI PMC
Hang D., Zeleznik O.A., Lu J., Joshi A.D., Wu K., Hu Z., Shen H., Clish C.B., Liang L., Eliassen A.H., et al. Plasma Metabolomic Profiles for Colorectal Cancer Precursors in Women. Eur. J. Epidemiol. 2022;37:413–422. doi: 10.1007/s10654-021-00834-5. PubMed DOI PMC
Choi S., Yoo Y.J., Kim H., Lee H., Chung H., Nam M.-H., Moon J.-Y., Lee H.S., Yoon S., Kim W.-Y. Clinical and Biochemical Relevance of Monounsaturated Fatty Acid Metabolism Targeting Strategy for Cancer Stem Cell Elimination in Colon Cancer. Biochem. Biophys. Res. Commun. 2019;519:100–105. doi: 10.1016/j.bbrc.2019.08.137. PubMed DOI
Mika A., Pakiet A., Czumaj A., Kaczynski Z., Liakh I., Kobiela J., Perdyan A., Adrych K., Makarewicz W., Sledzinski T. Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. J. Clin. Med. 2020;9:1095. doi: 10.3390/jcm9041095. PubMed DOI PMC
Chen L., Zhang C., Gui Q., Chen Y., Yang Y. Ultra-performance Liquid Chromatography Coupled with Quadrupole Time-of-flight Mass Spectrometry-based Metabolic Profiling of Human Serum Prior to and Following Radical Resection of Colorectal Carcinoma. Mol. Med. Rep. 2015;12:6879–6886. doi: 10.3892/mmr.2015.4289. PubMed DOI