Objective assessment of visual acuity: a refined model for analyzing the sweep VEP

. 2019 Apr ; 138 (2) : 97-116. [epub] 20190129

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30694438
Odkazy

PubMed 30694438
DOI 10.1007/s10633-019-09672-z
PII: 10.1007/s10633-019-09672-z
Knihovny.cz E-zdroje

PURPOSE: The aim of this study was to develop a simple and reliable method for the objective assessment of visual acuity by optimizing the stimulus used in commercially available systems and by improving the methods of evaluation using a nonlinear function, the modified Ricker model. METHODS: Subjective visual acuity in the normal subjects was measured with Snellen targets, best-corrected, and in some cases also uncorrected and with plus lenses (+ 1 D, + 2 D, + 3 D). In patients, subjective visual acuity was measured best-corrected using the Freiburg Visual Acuity Test. Sweep VEP recordings to 11 spatial frequencies, with check sizes in logarithmically equidistant steps (0.6, 0.9, 1.4, 2.1, 3.3, 4.9, 7.3, 10.4, 18.2, 24.4, and 36.5 cpd), were obtained from 56 healthy subjects aged between 17 and 69 years (mean 42.5 ± 15.3 SD years) and 20 patients with diseases of the lens (n = 6), retina (n = 8) or optic nerve (n = 6). The results were fit by a multiple linear regression (2nd-order polynomial) or a nonlinear regression (modified Ricker model) and parameters compared (limiting spatial frequency (sflimiting) and the spatial frequency of the vertex (sfvertex) of the parabola for the 2nd-order polynomial fitting, and the maximal spatial frequency (sfmax), and the spatial frequency where the amplitude is 2 dB higher than the level of noise (sfthreshold) for the modified Ricker model. RESULTS: Recording with 11 spatial frequencies allows a more accurate determination of acuities above 1.0 logMAR. Tuning curves fitted to the results show that compared to the normal 2nd-order polynomial analysis, the modified Ricker model is able to describe closely the amplitudes of the sweep VEP in relation to the spatial frequencies of the presented checkerboards. In patients with a visual acuity better than about 0.5 (decimal), the predicted acuities based on the different parameters show a good match of the predicted visual acuities based on the models established in healthy volunteers to the subjective visual acuities. However, for lower visual acuities, both models tend to overestimate the visual acuity (up to ~ 0.4 logMAR), especially in patients suffering from AMD. CONCLUSIONS: Both models, the 2nd-order polynomial and the modified Ricker model performed equally well in the prediction of the visual acuity based on the amplitudes recorded using the sweep VEP. However, the modified Ricker model does not require the exclusion of data points from the fit, as necessary when fitting the 2nd-order polynomial model making it more reliable and robust against outliers, and, in addition, provides a measure for the noise of the recorded results.

Zobrazit více v PubMed

Trends Cogn Sci. 2003 Apr;7(4):145-147 PubMed

J Physiol. 1968 Aug;197(3):551-66 PubMed

J Clin Neurophysiol. 2006 Apr;23(2):107-10 PubMed

Biometrics. 1982 Mar;38(1):105-14 PubMed

Ophthalmic Physiol Opt. 2008 Sep;28(5):393-403 PubMed

Doc Ophthalmol. 2013 Feb;126(1):45-56 PubMed

IEEE Trans Biomed Eng. 1965 Apr;12(2):87-94 PubMed

Klin Monbl Augenheilkd. 2002 Sep;219(9):660-7 PubMed

Neuroimage. 2000 Nov;12(5):550-64 PubMed

Doc Ophthalmol. 2008 Sep;117(2):85-91 PubMed

Ann Clin Biochem. 2015 May;52(Pt 3):382-6 PubMed

Vision Res. 1996 Mar;36(6):903-9 PubMed

Lancet. 1986 Feb 8;1(8476):307-10 PubMed

J Physiol. 1970 May;207(3):635-52 PubMed

Exp Brain Res. 1978 Nov 15;33(3-4):535-50 PubMed

Graefes Arch Clin Exp Ophthalmol. 2007 Jul;245(7):965-71 PubMed

Int J Ophthalmol. 2011;4(5):558-66 PubMed

Stat Methods Med Res. 1999 Jun;8(2):135-60 PubMed

Clin Neurophysiol. 2014 Jul;125(7):1471-8 PubMed

Klin Monbl Augenheilkd. 1999 Sep;215(3):175-81 PubMed

Electroencephalogr Clin Neurophysiol. 1970 Jan;28(1):48-54 PubMed

Clin Neurophysiol. 2008 Jun;119(6):1271-80 PubMed

J Physiol. 1966 Dec;187(3):517-52 PubMed

Doc Ophthalmol. 2004 Nov;109(3):239-47 PubMed

BMC Ophthalmol. 2012 Aug 06;12:36 PubMed

Invest Ophthalmol Vis Sci. 1979 Jul;18(7):703-13 PubMed

Invest Ophthalmol Vis Sci. 1993 Jan;34(1):120-9 PubMed

Neurology. 2009 Jan 13;72(2):162-4 PubMed

Doc Ophthalmol. 2017 Dec;135(3):209-218 PubMed

Br J Ophthalmol. 2008 Mar;92(3):396-403 PubMed

Theor Popul Biol. 1998 Dec;54(3):270-93 PubMed

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4687-90 PubMed

Doc Ophthalmol. 2010 Feb;120(1):111-9 PubMed

Doc Ophthalmol. 2016 Aug;133(1):1-9 PubMed

Optom Vis Sci. 1996 Jan;73(1):49-53 PubMed

Doc Ophthalmol. 2012 Apr;124(2):99-107 PubMed

Ophthalmic Physiol Opt. 1982;2(1):5-23 PubMed

Invest Ophthalmol Vis Sci. 1998 Dec;39(13):2759-68 PubMed

J Physiol. 1975 Nov;252(3):627-56 PubMed

Fortschr Ophthalmol. 1988;85(5):550-4 PubMed

Klin Monbl Augenheilkd. 1992 Feb;200(2):105-9 PubMed

Vision Res. 1974 Dec;14(12):1409-20 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...