-
Je něco špatně v tomto záznamu ?
High-throughput physical map anchoring via BAC-pool sequencing
K. Cviková, F. Cattonaro, M. Alaux, N. Stein, KF. Mayer, J. Doležel, J. Bartoš,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2001-12-01
BioMedCentral Open Access
od 2001
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2001
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2001-09-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Medline Complete (EBSCOhost)
od 2001-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
Springer Nature OA/Free Journals
od 2001-12-01
- MeSH
- chromozomy rostlin * MeSH
- mapování chromozomů * MeSH
- rostliny genetika MeSH
- umělé bakteriální chromozomy * MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS: We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS: We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Istituto di Genomica Applicata Via J Linussio 51 33100 Udine Italy
Plant Genome and Systems Biology Helmholtz Zentrum München 85764 Neuherberg Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010315
- 003
- CZ-PrNML
- 005
- 20160412122024.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12870-015-0429-1 $2 doi
- 024 7_
- $a 10.1186/s12870-015-0429-1 $2 doi
- 035 __
- $a (PubMed)25887276
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Cviková, Kateřina $u Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic. cvikova@ueb.cas.cz.
- 245 10
- $a High-throughput physical map anchoring via BAC-pool sequencing / $c K. Cviková, F. Cattonaro, M. Alaux, N. Stein, KF. Mayer, J. Doležel, J. Bartoš,
- 520 9_
- $a BACKGROUND: Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS: We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS: We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
- 650 12
- $a mapování chromozomů $7 D002874
- 650 12
- $a umělé bakteriální chromozomy $7 D022202
- 650 12
- $a chromozomy rostlin $7 D032461
- 650 12
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a rostliny $x genetika $7 D010944
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cattonaro, Federica $u Istituto di Genomica Applicata, Via J. Linussio 51, 33100, Udine, Italy. cattonaro@appliedgenomics.org.
- 700 1_
- $a Alaux, Michael $u INRA, UR1164 URGI - Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026, Versailles, France. michael.alaux@versailles.inra.fr. $7 gn_A_00003322
- 700 1_
- $a Stein, Nils $u Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany. stein@ipk-gatersleben.de.
- 700 1_
- $a Mayer, Klaus Fx $u Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany. k.mayer@helmholtz-muenchen.de.
- 700 1_
- $a Doležel, Jaroslav $u Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic. dolezel@ueb.cas.cz.
- 700 1_
- $a Bartoš, Jan $u Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic. bartos@ueb.cas.cz.
- 773 0_
- $w MED00006798 $t BMC plant biology $x 1471-2229 $g Roč. 15, č. - (2015), s. 99
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25887276 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160412122107 $b ABA008
- 999 __
- $a ok $b bmc $g 1113744 $s 934683
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 15 $c - $d 99 $e 20150411 $i 1471-2229 $m Bmc plant biology $n BMC Plant Biol $x MED00006798
- LZP __
- $a Pubmed-20160408