The Potential for the Direct and Alternating Current-Driven Electrospinning of Polyamides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
European Structural and Investment Funds
PubMed
35214993
PubMed Central
PMC8877202
DOI
10.3390/nano12040665
PII: nano12040665
Knihovny.cz E-zdroje
- Klíčová slova
- alternating current (AC), direct current (DC), electrospinning, nanofibers, nylon, polyamide, polymer solution,
- Publikační typ
- časopisecké články MeSH
The paper provides a description of the potential for the direct current- and alternating current-driven electrospinning of various linear aliphatic polyamides (PA). Sets with increasing concentrations of selected PAs were dissolved in a mixture of formic acid and dichloromethane at a weight ratio of 1:1 and spun using a bar electrode applying direct and alternating high voltage. The solubility and spinnability of the polyamides were investigated and scanning electron microscopy (SEM) images were acquired of the resulting nanofiber layers. The various defects of the spun fibers and their diameters were detected and subsequently measured. Moreover, the dynamic viscosity and conductivity were also subjected to detailed investigation. The most suitable concentrations for each of the PAs were determined according to previous findings, and the solutions were spun using a NanospiderTM device at the larger scale. The fiber diameters of these samples were also measured. Finally, the surface energy of the fiber layers produced by the NanospiderTM device was measured aimed at selecting a suitable PA for a particular application.
Zobrazit více v PubMed
Jahnke T.S. Nylon Plastics Handbook Edited by Melvin I. Kohan (MIK Associates). Hanser: Cincinnati, OH. 1995. xii + 631 pp. $198.00. ISBN 1-56990-189-9. J. Am. Chem. Soc. 1996;118:8186. doi: 10.1021/ja9655808. DOI
Puiggalí J. Aliphatic polyamides (nylons): Interplay between hydrogen bonds and crystalline structures, polymorphic transitions and crystallization. Polym. Cryst. 2021;4:e10199. doi: 10.1002/pcr2.10199. DOI
Harper C.A. Modern Plastics Handbook. McGraw-Hill; New York, NY, USA: 2000.
Razumovskii L., Markin V., Zaikov G. Sorption of water by aliphatic polyamides. Review. Polym. Sci. USSR. 1985;27:751–768. doi: 10.1016/0032-3950(85)90411-3. DOI
McKeen L.W., Massey L.K. Film Properties of Plastics and Elastomers: A Guide to Non-Wovens in Packaging Applications. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2004. p. 221.
Kumar K.D., Shantharaja M., Kumar N., Manjunatha G. Morphological and mechanical properties of short fibres reinforced hybrid composites for automotive applications. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.10.401. DOI
Deopura B.L., Padaki N.V. Chapter 5—Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres. In: Sinclair R., editor. Textiles and Fashion. Woodhead Publishing; Cambridge, UK: 2015. pp. 97–114. (Woodhead Publishing Series in Textiles).
Ning J., Tian C., Yang Y., Huang L., Lv J., Zeng F., Liu Q., Zhao F., Kong W., Cai X. A novel intrinsic semi-aromatic polyamide dielectric toward excellent thermal stability, mechanical robustness and dielectric performance. Polymer. 2021;234:124233. doi: 10.1016/j.polymer.2021.124233. DOI
Tyuftin A.A., Kerry J.P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties. Food Packag. Shelf Life. 2020;24:100475. doi: 10.1016/j.fpsl.2020.100475. DOI
Maitz M. Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 2015;1:161–176. doi: 10.1016/j.bsbt.2015.08.002. DOI
Blažková L., Malinová L., Benešová V., Roda J., Brožek J. Nanofibers prepared by electrospinning from solutions of biobased polyamide 4. J. Polym. Sci. Part A Polym. Chem. 2017;55:2203–2210. doi: 10.1002/pola.28605. DOI
Lövestam G., Rauscher H., Roebben G., Klüttgen B.S., Gibson N., Putaud J.-P., Stamm H. Considerations on a Definition of Nanomaterial for Regulatory Purposes. JRC; Brussels, Belgium: 2010. DOI
Kenry, Lim C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI
Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI
El-Aswar E.I., Ramadan H., Elkik H., Taha A.G. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J. Environ. Manag. 2021;301:113908. doi: 10.1016/j.jenvman.2021.113908. PubMed DOI
Reneker D., Yarin A., Zussman E., Xu H. Electrospinning of Nanofibers from Polymer Solutions and Melts. Adv. Appl. Mech. 2007;41:43–346. doi: 10.1016/s0065-2156(07)41002-x. DOI
Shepa I., Mudra E., Dusza J. Electrospinning through the prism of time. Mater. Today Chem. 2021;21:100543. doi: 10.1016/j.mtchem.2021.100543. DOI
Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI
Office E.P. A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method. [(accessed on 30 November 2021)]. Available online: https://data.epo.org/publication-server/document?iDocId=3478463&iFormat=0.
Mirek A., Korycka P., Grzeczkowicz M., Lewińska D. Polymer fibers electrospun using pulsed voltage. Mater. Des. 2019;183:108106. doi: 10.1016/j.matdes.2019.108106. DOI
Kalous T., Holec P., Jirkovec R., Lukas D., Chvojka J. Improved spinnability of PA 6 solutions using AC electrospinning. Mater. Lett. 2020;283:128761. doi: 10.1016/j.matlet.2020.128761. DOI
Jirkovec R., Erben J., Sajdl P., Chaloupek J., Chvojka J. The effect of material and process parameters on the surface energy of polycaprolactone fibre layers. Mater. Des. 2021;205:109748. doi: 10.1016/j.matdes.2021.109748. DOI
Ryšánek P., Čapková P., Štojdl J., Trögl J., Benada O., Kormunda M., Kolská Z., Munzarová M. Stability of antibacterial modification of nanofibrous PA6/DTAB membrane during air filtration. Mater. Sci. Eng. C. 2018;96:807–813. doi: 10.1016/j.msec.2018.11.065. PubMed DOI
Erben J., Klicova M., Klapstova A., Háková M., Lhotská I., Zatrochová S., Šatínský D., Chvojka J. New polyamide 6 nanofibrous sorbents produced via alternating current electrospinning for the on-line solid phase extraction of small molecules in chromatography systems. Microchem. J. 2021;174:107084. doi: 10.1016/j.microc.2021.107084. DOI
Nur P.F., Pınar T., Uğur P., Ayşenur Y., Murat E., Kenan Y. Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications. Mater. Today Commun. 2021;29:102921. doi: 10.1016/j.mtcomm.2021.102921. DOI
Nirmala R., Park H.-M., Navamathavan R., Kang H.-S., El-Newehy M.H., Kim H.Y. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture. Mater. Sci. Eng. C. 2011;31:486–493. doi: 10.1016/j.msec.2010.11.013. DOI
Yar A., Kınas Z., Karabiber A., Ozen A., Okbaz A., Ozel F. Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting. Renew. Energy. 2021;179:1781–1792. doi: 10.1016/j.renene.2021.07.118. DOI
Nirmala R., Panth H.R., Yi C., Nam K.T., Park S.-J., Kim H.Y., Navamathavan R. Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning. Macromol. Res. 2010;18:759–765. doi: 10.1007/s13233-010-0808-2. DOI
Wei W., Yeh J.-T., Li P., Li M.-R., Li W., Wang X.-L. Effect of nonsolvent on morphologies of polyamide 6 electrospun fibers. J. Appl. Polym. Sci. 2010;118:3005–3012. doi: 10.1002/app.32704. DOI
Pant H.R., Bajgai M.P., Yi C., Nirmala R., Nam K.T., Baek W.-I., Kim H.Y. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2010;370:87–94. doi: 10.1016/j.colsurfa.2010.08.051. DOI
Ding B., Li C., Miyauchi Y., Kuwaki O., Shiratori S. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology. 2006;17:3685–3691. doi: 10.1088/0957-4484/17/15/011. DOI
Li Y., Huang Z., Lǚ Y. Electrospinning of nylon-6,66,1010 terpolymer. Eur. Polym. J. 2006;42:1696–1704. doi: 10.1016/j.eurpolymj.2006.02.002. DOI
Behler K., Havel M., Gogotsi Y. New solvent for polyamides and its application to the electrospinning of polyamides 11 and 12. Polymer. 2007;48:6617–6621. doi: 10.1016/j.polymer.2007.08.058. DOI
Lee H., Alcoutlabi M., Toprakçi O., Xu G., Watson J.V., Zhang X. Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. J. Solid State Electrochem. 2014;18:2451–2458. doi: 10.1007/s10008-014-2501-4. DOI
Dhanalakshmi M., Lele A.K., Jog J.P. Electrospinning of Nylon11: Effect of processing parameters on morphology and microstructure. Mater. Today Commun. 2015;3:141–148. doi: 10.1016/j.mtcomm.2015.01.002. DOI