The Potential for the Direct and Alternating Current-Driven Electrospinning of Polyamides

. 2022 Feb 16 ; 12 (4) : . [epub] 20220216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35214993

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843 European Structural and Investment Funds

The paper provides a description of the potential for the direct current- and alternating current-driven electrospinning of various linear aliphatic polyamides (PA). Sets with increasing concentrations of selected PAs were dissolved in a mixture of formic acid and dichloromethane at a weight ratio of 1:1 and spun using a bar electrode applying direct and alternating high voltage. The solubility and spinnability of the polyamides were investigated and scanning electron microscopy (SEM) images were acquired of the resulting nanofiber layers. The various defects of the spun fibers and their diameters were detected and subsequently measured. Moreover, the dynamic viscosity and conductivity were also subjected to detailed investigation. The most suitable concentrations for each of the PAs were determined according to previous findings, and the solutions were spun using a NanospiderTM device at the larger scale. The fiber diameters of these samples were also measured. Finally, the surface energy of the fiber layers produced by the NanospiderTM device was measured aimed at selecting a suitable PA for a particular application.

Zobrazit více v PubMed

Jahnke T.S. Nylon Plastics Handbook Edited by Melvin I. Kohan (MIK Associates). Hanser: Cincinnati, OH. 1995. xii + 631 pp. $198.00. ISBN 1-56990-189-9. J. Am. Chem. Soc. 1996;118:8186. doi: 10.1021/ja9655808. DOI

Puiggalí J. Aliphatic polyamides (nylons): Interplay between hydrogen bonds and crystalline structures, polymorphic transitions and crystallization. Polym. Cryst. 2021;4:e10199. doi: 10.1002/pcr2.10199. DOI

Harper C.A. Modern Plastics Handbook. McGraw-Hill; New York, NY, USA: 2000.

Razumovskii L., Markin V., Zaikov G. Sorption of water by aliphatic polyamides. Review. Polym. Sci. USSR. 1985;27:751–768. doi: 10.1016/0032-3950(85)90411-3. DOI

McKeen L.W., Massey L.K. Film Properties of Plastics and Elastomers: A Guide to Non-Wovens in Packaging Applications. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2004. p. 221.

Kumar K.D., Shantharaja M., Kumar N., Manjunatha G. Morphological and mechanical properties of short fibres reinforced hybrid composites for automotive applications. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.10.401. DOI

Deopura B.L., Padaki N.V. Chapter 5—Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres. In: Sinclair R., editor. Textiles and Fashion. Woodhead Publishing; Cambridge, UK: 2015. pp. 97–114. (Woodhead Publishing Series in Textiles).

Ning J., Tian C., Yang Y., Huang L., Lv J., Zeng F., Liu Q., Zhao F., Kong W., Cai X. A novel intrinsic semi-aromatic polyamide dielectric toward excellent thermal stability, mechanical robustness and dielectric performance. Polymer. 2021;234:124233. doi: 10.1016/j.polymer.2021.124233. DOI

Tyuftin A.A., Kerry J.P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties. Food Packag. Shelf Life. 2020;24:100475. doi: 10.1016/j.fpsl.2020.100475. DOI

Maitz M. Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 2015;1:161–176. doi: 10.1016/j.bsbt.2015.08.002. DOI

Blažková L., Malinová L., Benešová V., Roda J., Brožek J. Nanofibers prepared by electrospinning from solutions of biobased polyamide 4. J. Polym. Sci. Part A Polym. Chem. 2017;55:2203–2210. doi: 10.1002/pola.28605. DOI

Lövestam G., Rauscher H., Roebben G., Klüttgen B.S., Gibson N., Putaud J.-P., Stamm H. Considerations on a Definition of Nanomaterial for Regulatory Purposes. JRC; Brussels, Belgium: 2010. DOI

Kenry, Lim C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI

Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI

El-Aswar E.I., Ramadan H., Elkik H., Taha A.G. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J. Environ. Manag. 2021;301:113908. doi: 10.1016/j.jenvman.2021.113908. PubMed DOI

Reneker D., Yarin A., Zussman E., Xu H. Electrospinning of Nanofibers from Polymer Solutions and Melts. Adv. Appl. Mech. 2007;41:43–346. doi: 10.1016/s0065-2156(07)41002-x. DOI

Shepa I., Mudra E., Dusza J. Electrospinning through the prism of time. Mater. Today Chem. 2021;21:100543. doi: 10.1016/j.mtchem.2021.100543. DOI

Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI

Office E.P. A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method. [(accessed on 30 November 2021)]. Available online: https://data.epo.org/publication-server/document?iDocId=3478463&iFormat=0.

Mirek A., Korycka P., Grzeczkowicz M., Lewińska D. Polymer fibers electrospun using pulsed voltage. Mater. Des. 2019;183:108106. doi: 10.1016/j.matdes.2019.108106. DOI

Kalous T., Holec P., Jirkovec R., Lukas D., Chvojka J. Improved spinnability of PA 6 solutions using AC electrospinning. Mater. Lett. 2020;283:128761. doi: 10.1016/j.matlet.2020.128761. DOI

Jirkovec R., Erben J., Sajdl P., Chaloupek J., Chvojka J. The effect of material and process parameters on the surface energy of polycaprolactone fibre layers. Mater. Des. 2021;205:109748. doi: 10.1016/j.matdes.2021.109748. DOI

Ryšánek P., Čapková P., Štojdl J., Trögl J., Benada O., Kormunda M., Kolská Z., Munzarová M. Stability of antibacterial modification of nanofibrous PA6/DTAB membrane during air filtration. Mater. Sci. Eng. C. 2018;96:807–813. doi: 10.1016/j.msec.2018.11.065. PubMed DOI

Erben J., Klicova M., Klapstova A., Háková M., Lhotská I., Zatrochová S., Šatínský D., Chvojka J. New polyamide 6 nanofibrous sorbents produced via alternating current electrospinning for the on-line solid phase extraction of small molecules in chromatography systems. Microchem. J. 2021;174:107084. doi: 10.1016/j.microc.2021.107084. DOI

Nur P.F., Pınar T., Uğur P., Ayşenur Y., Murat E., Kenan Y. Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications. Mater. Today Commun. 2021;29:102921. doi: 10.1016/j.mtcomm.2021.102921. DOI

Nirmala R., Park H.-M., Navamathavan R., Kang H.-S., El-Newehy M.H., Kim H.Y. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture. Mater. Sci. Eng. C. 2011;31:486–493. doi: 10.1016/j.msec.2010.11.013. DOI

Yar A., Kınas Z., Karabiber A., Ozen A., Okbaz A., Ozel F. Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting. Renew. Energy. 2021;179:1781–1792. doi: 10.1016/j.renene.2021.07.118. DOI

Nirmala R., Panth H.R., Yi C., Nam K.T., Park S.-J., Kim H.Y., Navamathavan R. Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning. Macromol. Res. 2010;18:759–765. doi: 10.1007/s13233-010-0808-2. DOI

Wei W., Yeh J.-T., Li P., Li M.-R., Li W., Wang X.-L. Effect of nonsolvent on morphologies of polyamide 6 electrospun fibers. J. Appl. Polym. Sci. 2010;118:3005–3012. doi: 10.1002/app.32704. DOI

Pant H.R., Bajgai M.P., Yi C., Nirmala R., Nam K.T., Baek W.-I., Kim H.Y. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2010;370:87–94. doi: 10.1016/j.colsurfa.2010.08.051. DOI

Ding B., Li C., Miyauchi Y., Kuwaki O., Shiratori S. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology. 2006;17:3685–3691. doi: 10.1088/0957-4484/17/15/011. DOI

Li Y., Huang Z., Lǚ Y. Electrospinning of nylon-6,66,1010 terpolymer. Eur. Polym. J. 2006;42:1696–1704. doi: 10.1016/j.eurpolymj.2006.02.002. DOI

Behler K., Havel M., Gogotsi Y. New solvent for polyamides and its application to the electrospinning of polyamides 11 and 12. Polymer. 2007;48:6617–6621. doi: 10.1016/j.polymer.2007.08.058. DOI

Lee H., Alcoutlabi M., Toprakçi O., Xu G., Watson J.V., Zhang X. Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. J. Solid State Electrochem. 2014;18:2451–2458. doi: 10.1007/s10008-014-2501-4. DOI

Dhanalakshmi M., Lele A.K., Jog J.P. Electrospinning of Nylon11: Effect of processing parameters on morphology and microstructure. Mater. Today Commun. 2015;3:141–148. doi: 10.1016/j.mtcomm.2015.01.002. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Methods for increasing productivity of AC-electrospinning using weir-electrode

. 2024 Oct 14 ; 14 (1) : 24012. [epub] 20241014

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...