Characterization of Hybrid Composites with Polyester Waste Fibers, Olive Root Fibers and Coir Pith Micro-Particles Using Mixture Design Analysis for Structural Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021:31140/1312/3108
Internal grant agency of the Faculty of Engineering, Czech University of Life Sciences Prague
PubMed
34301048
PubMed Central
PMC8309386
DOI
10.3390/polym13142291
PII: polym13142291
Knihovny.cz E-zdroje
- Klíčová slova
- building materials, coir pith filler, hybrid composite, mixture design analysis, olive root fiber, polyester waste fiber,
- Publikační typ
- časopisecké články MeSH
In the present work, hybrid composites were developed by using polyester waste fibers along with natural origin materials: olive root fibers and coir pitch filler. Such composite panels can be used as a potential alternative for fiber glass sunshade panels and room dividers in buildings. Hybrid composites were fabricated by mixing polyester waste fibers and olive root fibers in different ratios (0:100, 33:67, 67:33 and 100:0). Coir pith micro-particles with an average size of 312 d.nm were used as filler in the polyester matrix at three different levels (0%, 5%, and 10%) of the overall matrix weight. Mechanical properties, e.g., tensile strength, flexural strength and impact strength, thermal properties, e.g., coefficient of linear thermal expansion, thermo-gravimetric analysis (TGA) and environmental properties, e.g., water absorption, loss of density after exposure to weathering were characterized. For comparison purposes, a commercially available fiber glass sunshades sample was also investigated. Mixture design analysis was used to optimize the ratio of all components in the composite. Graphical comparison of experimental results using regression models showed a high degree of correlation. An optimized formulation of composite with an objective of maximization of tensile strength, flexural strength, impact strength and minimization of water absorption, density loss, as well as coefficient of linear thermal expansion, was determined at 70.83 wt%, 15.15 wt%, and 14.01 wt% of polyester waste fibers, olive root fibers and coir pith micro-fillers, respectively. Overall, it can be concluded that the developed hybrid composites from waste fibrous materials can be used as a promising alternative and a value-added application in buildings and construction purposes.
Zobrazit více v PubMed
Belgacem M.N., Gandini A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos. Interfaces. 2005;12:41–75. doi: 10.1163/1568554053542188. DOI
Masuelli M. Fiber Reinforced Polymers: The Technology Applied for Concrete Repair. Intech Open Limited; London, UK: 2013.
Valadez-Gonzalez A.J., Olayo C., Herrera-Franco P. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI
Gibson R.F. Principle of Composite Material Mechanics. 3rd ed. CRC Press; Boca Raton, FL, USA: 2011.
Joshi S.V., Drzal L., Mohanty A., Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. 2004;35:371–376. doi: 10.1016/j.compositesa.2003.09.016. DOI
Mohanty A.K., Misra M., Drzal L.T. Natural Fibers, Biopolymers, and Biocomposites. CRC Press Taylor and Francis; London, UK: 2005.
Faruk O., Bledzki A.K., Fink H.P., Sain M. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 2014;299:9–26. doi: 10.1002/mame.201300008. DOI
Saheb D.N., Jog J.P. Natural fiber polymer composites: A review. Adv. Polym. Tech. J. Polym. Proc. Inst. 1999;18:351–363. doi: 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X. DOI
Mohanty A., Misra M., Drzal L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces. 2001;8:313–343. doi: 10.1163/156855401753255422. DOI
Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Dashtizadeh Z., Abdan K., Jawaid M., Khan M., Behmanesh A.M., Dashtizadeh M., Cardona F., Ishak M. Mechanical and thermal properties of natural fibre based hybrid composites: A review. Pertanika J. Sci. Technol. 2017;25:1103–1122.
Gururaja M., Rao A.H. A review on recent applications and future prospectus of hybrid composites. Int. J. Soft Comput. Eng. 2012;1:352–355.
Franciszczak P., Piesowicz E., Kalniņš K. Manufacturing and properties of r-PETG/PET fibre composite–Novel approach for recycling of PETG plastic scrap into engineering compound for injection moulding. Compos. Part B Eng. 2018;154:430–438. doi: 10.1016/j.compositesb.2018.09.023. DOI
Wu C., Hsieh W., Su S., Cheng K., Lee K., Lai C. Study of braiding commingled self-reinforced PET composites. Int. J. Mod. Phy. B. 2018;32:1840086. doi: 10.1142/S0217979218400866. DOI
Ahmad M., Majid M., Ridzuan M., Firdaus A., Amin N. Tensile properties of interwoven hemp/PET (Polyethylene Terephthalate) epoxy hybrid composites. J. Phy. Conf. Series. 2017;908:012011. doi: 10.1088/1742-6596/908/1/012011. DOI
Dan-mallam Y., Abdullah M.Z., Yusoff P. Mechanical properties of recycled kenaf/polyethylene terephthalate (PET) fiber reinforced polyoxymethylene (POM) hybrid composite. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.39831. DOI
Wu C., Lin P., Murakami R. Long-term creep behavior of self-reinforced PET composites. Exp. Polym. Lett. 2017;11 doi: 10.3144/expresspolymlett.2017.78. DOI
Narendar R., Dasan K.P. Development of coir pith based hybrid composite panels with enhanced water resistant behavior. Environ. Prog. Sust. Energy. 2015;34:1481–1487. doi: 10.1002/ep.12127. DOI
Essabir H., Bensalah M., Rodrigue D., Bouhfid R., Qaiss A. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell micro-particles. Mech. Mater. 2016;93:134–144. doi: 10.1016/j.mechmat.2015.10.018. DOI
Islam M.T., Das S.C., Saha J., Paul D., Islam M.T., Rahman M., Khan M.A. Effect of coconut shell powder as filler on the mechanical properties of coir-polyester composites. Chem. Mate.r Eng. 2017;5:75–82. doi: 10.13189/cme.2017.050401. DOI
Narendar R., Dasan K.P. Effect of chemical treatment on the mechanical and water absorption properties of coir pith/nylon/epoxy sandwich composites. Int. J. Polym. Anal. Char. 2013;18:369–376. doi: 10.1080/1023666X.2013.785070. DOI
Jamshaid H., Mishra R., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fiber Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Prithivirajan R., Jayabal S., Sundaram S.K., Kumar A.P. Hybrid bio composites from agricultural residues: Mechanical and thickness swelling behavior. Int. J. Chem. Tech. Res. 2016;9:609–615.
Mishra R., Huang J., Kale B., Zhu G., Wang Y. The production, characterization and applications of nanoparticles in the textile industry. Textile Prog. 2014;46:133–226. doi: 10.1080/00405167.2014.964474. DOI
Dehas W., Guessoum M., Douibi A., Jofre-Reche J.A., Martin-Martinez J.M. Thermal, mechanical, and viscoelastic properties of recycled poly (ethylene terephthalate) fiber-reinforced unsaturated polyester composites. Polym. Compos. 2018;39:1682–1693. doi: 10.1002/pc.24119. DOI
Abdullah M.Z., Dan-mallam Y., Yusoff P. Effect of environmental degradation on mechanical properties of kenaf/polyethylene terephthalate fiber reinforced polyoxymethylene hybrid composite. Adv. Mater. Sci. Eng. 2013;2013:671481. doi: 10.1155/2013/671481. DOI
Dan-Mallam Y., Abdullah M.Z., Yosuff P. Impact strength, microstructure, and water absorption properties of kenaf/polyethylene terephthalate (PET) fiber-reinforced polyoxymethylene (POM) hybrid composites. J. Mater. Res. 2013;28:2142–2146. doi: 10.1557/jmr.2013.210. DOI
Amir M., Irmawaty R., Hustim M., Rahim I. Tensile strength of glass fiber-reinforced waste PET and Kenauf hybrid composites; Proceedings of the IOP Conference Series Earth and Environmental Science; Bali, Indonesia. 29–30 August 2020; p. 012061. DOI
Ayrilmis N., Buyuksari U. Utilization of olive mill sludge in manufacture of lignocellulosic/polypropylene composite. J. Mater. Sci. 2010;45:1336–1342. doi: 10.1007/s10853-009-4087-2. DOI
Raghavarao D., Wiley J.B., Chitturi P. Choice-Based Conjoint Analysis: Models and Designs. CRC Press; Boca Raton, FL, USA: 2010.
Zhang C., Wong W.K. Optimal designs for mixture models with amount constraints. Stat. Prob. Lett. 2013;83:196–202. doi: 10.1016/j.spl.2012.08.029. DOI
Tucker C.L., Liang E. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol. 1999;59:655–671. doi: 10.1016/S0266-3538(98)00120-1. DOI
Halpin Affdl J.C., Kardos J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976;16:344–352. doi: 10.1002/pen.760160512. DOI
Makarian K., Santhanam S., Wing Z.N. Coefficient of thermal expansion of particulate composites with ceramic inclusions. Ceram. Int. 2016;42:17659–17665. doi: 10.1016/j.ceramint.2016.08.082. DOI
Karch C. Micromechanical analysis of thermal expansion coefficients. Model. Numer. Simul. Mater. Sci. 2014;4:104–119. doi: 10.4236/mnsms.2014.43012. DOI
Safi M., Hassanzadeh-Aghdam M.K., Mahmoodi M.J. Effects of nano-sized ceramic particles on the coefficients of thermal expansion of short SiC fiber-aluminum hybrid composites. J. Alloys Compd. 2019;803:554–564. doi: 10.1016/j.jallcom.2019.06.314. DOI
Cornell J.A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Oehlert G.W. A First Course in Design and Analysis of Experiments. University of Minnesota; Minneapolis, MN, USA: 2010.
Rostamiyan Y., Mashhadzadeh A.H., Khani A.S. Optimization of mechanical properties of epoxy-based hybrid composite: Effect of using silica and high-impact polystyrene by mixture design approach. Mater. Des. 2014;56:1068–1077. doi: 10.1016/j.matdes.2013.11.060. DOI
Dehghani A., Ardekani S.M., Al-Maadeed M.A., Hassan A., Wahit M.U. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater. Des. 2013;52:841–848. doi: 10.1016/j.matdes.2013.06.022. DOI
Nagaraj C., Mishra D., Reddy J.D. Estimation of tensile properties of fabricated multi layered natural jute fiber reinforced E-glass composite material. Mater. Today Proc. 2020;27:1443–1448. doi: 10.1016/j.matpr.2020.02.864. DOI
Guangfa G., Shujie Y., Ruiyuan H., Yongchi L. Experimental investigation on thermal physical properties of an advanced polyester material. Phy. Proc. 2012;25:333–338. doi: 10.1016/j.phpro.2012.03.092. DOI