The Optimization of Alternating Current Electrospun PA 6 Solutions Using a Visual Analysis System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
European Structural and Investment Funds as part of the Research, Development and Education Operational Programme - the Hybrid Materials for Hierarchical Structures project
PubMed
34202197
PubMed Central
PMC8271821
DOI
10.3390/polym13132098
PII: polym13132098
Knihovny.cz E-zdroje
- Klíčová slova
- AC electrospinning, nanofibers, polymer solution, productivity, relaxation time,
- Publikační typ
- časopisecké články MeSH
The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.
Zobrazit více v PubMed
Morton W.J. Method of Dispersing Fluids. 705,691. U.S. Patent. 1902 Jul 29;
Ramakrishna S., Fujihara K., Teo W.-E., Lim T.-C., Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific; Singapore: 2005.
Yarin A.L., Zussman E. Upward Needleless Electrospinning of Multiple Nanofibers. Polymer. 2004;45:2977–2980. doi: 10.1016/j.polymer.2004.02.066. DOI
Jirsak O., Sanetrnik F., Lukas D., Kotek V., Martinova L., Chaloupek J. Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method. No 7,585,437. U.S. Patent. 2009 Aug 9;
Rubin Pedrazzo A., Cecone C., Morandi S., Manzoli M., Bracco P., Zanetti M. Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers. 2021;13:977. doi: 10.3390/polym13060977. PubMed DOI PMC
Wang M., Li D., Li J., Li S., Chen Z., Yu D.-G., Liu Z., Guo J.Z. Electrospun Janus Zein–PVP Nanofibers Provide a Two-Stage Controlled Release of Poorly Water-Soluble Drugs. Mater. Des. 2020;196:109075. doi: 10.1016/j.matdes.2020.109075. DOI
Thamer B.M., Aldalbahi A., Moydeen A.M., Rahaman M., El-Newehy M.H. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers. 2021;13:20. doi: 10.3390/polym13010020. PubMed DOI PMC
Wang M., Hou J., Yu D.-G., Li S., Zhu J., Chen Z. Electrospun Tri-Layer Nanodepots for Sustained Release of Acyclovir. J. Alloy. Compd. 2020;846:156471. doi: 10.1016/j.jallcom.2020.156471. DOI
Ding Y., Dou C., Chang S., Xie Z., Yu D.-G., Liu Y., Shao J. Core–Shell Eudragit S100 Nanofibers Prepared via Triaxial Electrospinning to Provide a Colon-Targeted Extended Drug Release. Polymers. 2020;12:2034. doi: 10.3390/polym12092034. PubMed DOI PMC
Zhao K., Kang S.-X., Yang Y.-Y., Yu D.-G. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers. 2021;13:226. doi: 10.3390/polym13020226. PubMed DOI PMC
Aidana Y., Wang Y., Li J., Chang S., Wang K., Yu D.-G. Fast Dissolution Electrospun Medicated Nanofibers for Effective Delivery of Poorly Water-Soluble Drugs. Curr. Drug Deliv. 2021;18 doi: 10.2174/1567201818666210215110359. PubMed DOI
Lukas D., Sarkar A., Pokorny P. Self-Organization of Jets in Electrospinning from Free Liquid Surface: A Generalized Approach. J. Appl. Phys. 2008;103:084309. doi: 10.1063/1.2907967. DOI
Deliu R., Sandu I.G., Butnaru R., Lukas D., Sandu I. Needleless Electrospinning. Mater. Plast. 2014;5:62–66.
Kong C.S., Choi S.J., Lee H.S., Kim H.S. Observation of Electrospinning Behavior of Nanoscale Fibers by a High-Speed Camera. J. Macromol. Sci. Part B. 2016;55:201–210. doi: 10.1080/00222348.2016.1138041. DOI
Uematsu I., Uchida K., Nakagawa Y., Matsumoto H. Direct Observation and Quantitative Analysis of the Fiber Formation Process during Electrospinning by a High-Speed Camera. Ind. Eng. Chem. Res. 2018;57 doi: 10.1021/acs.iecr.8b02352. DOI
Kessick R., Fenn J., Tepper G. The Use of AC Potentials in Electrospraying and Electrospinning Processes. Polymer. 2004;45:2981–2984. doi: 10.1016/j.polymer.2004.02.056. DOI
Maheshwari S., Chang H.-C. Assembly of Multi-Stranded Nanofiber Threads through AC Electrospinning. Adv. Mater. 2009;21:349–354. doi: 10.1002/adma.200800722. DOI
Farkas B., Balogh A., Farkas A., Marosi G., Nagy Z.K. Frequency and Waveform Dependence of Alternating Current Electrospinning and Their Uses for Drug Dissolution Enhancement. Int. J. Pharm. 2020;586:119593. doi: 10.1016/j.ijpharm.2020.119593. PubMed DOI
Pokorny P., Kostakova E., Sanetrnik F., Mikes P., Chvojka J., Kalous T., Bilek M., Pejchar K., Valtera J., Lukas D. Effective AC Needleless and Collectorless Electrospinning for Yarn Production. Phys. Chem. Chem. Phys. 2014;16:26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI
Robinson M. Movement of Air in the Electric Wind of the Corona Discharge. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 1961;80:143–150. doi: 10.1109/TCE.1961.6373091. DOI
Drews A.M., Cademartiri L., Whitesides G.M., Bishop K.J.M. Electric Winds Driven by Time Oscillating Corona Discharges. J. Appl. Phys. 2013;114:143302. doi: 10.1063/1.4824748. DOI
Heikkilä P., Taipale A., Lehtimäki M., Harlin A. Electrospinning of Polyamides with Different Chain Compositions for Filtration Application. Polym. Eng. Sci. 2008;48:1168–1176. doi: 10.1002/pen.21070. DOI
Matulevicius J., Kliucininkas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014 doi: 10.1155/2014/859656. DOI
Iacob A.-T., Drăgan M., Ionescu O.-M., Profire L., Ficai A., Andronescu E., Confederat L.G., Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics. 2020;12:983. doi: 10.3390/pharmaceutics12100983. PubMed DOI PMC
Winnacker M. Polyamides and Their Functionalization: Recent Concepts for Their Applications as Biomaterials. Biomater. Sci. 2017;5:1230–1235. doi: 10.1039/C7BM00160F. PubMed DOI
Valtera J., Kalous T., Pokorny P., Batka O., Bilek M., Chvojka J., Mikes P., Kostakova E.K., Zabka P., Ornstova J., et al. Fabrication of Dual-Functional Composite Yarns with a Nanofibrous Envelope Using High Throughput AC Needleless and Collectorless Electrospinning. Sci. Rep. 2019;9:1801. doi: 10.1038/s41598-019-38557-z. PubMed DOI PMC
Jirkovec R., Holec P., Hauzerova S., Samkova A., Kalous T., Chvojka J. Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning. ACS Omega. 2021;6:9234–9242. doi: 10.1021/acsomega.1c00644. PubMed DOI PMC
Kalous T., Holec P., Jirkovec R., Lukas D., Chvojka J. Improved Spinnability of PA 6 Solutions Using AC Electrospinning. Mater. Lett. 2021;283:128761. doi: 10.1016/j.matlet.2020.128761. DOI