Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33842792
PubMed Central
PMC8028135
DOI
10.1021/acsomega.1c00644
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This research involved the production of polycaprolactone fiber layers via the alternating current electrospinning method. To construct the micro/nanofiber scaffold, mixtures of two molecular weight solutions, M n 45 000 and M n 80 000, were spun in differing proportions in a solvent system containing acetic acid, formic acid, and acetone in a ratio of 1:1:1. The composite fiber materials with hydroxyapatite particles were prepared from a solution that combined the different molecular weight solutions at a ratio of 1:3. The study resulted in the preparation of fiber layers containing 0, 5, 10, and 15% (wt) hydroxyapatite particles from the dry mass of the polycaprolactone. The strength, wettability, and surface energy of the composite materials were examined, and the results demonstrated that hydroxyapatite affects the fiber diameters, strength, and surface energy and, thus, the wettability of the fiber layers. The fibrous layers produced were further tested for cytotoxicity and cell viability and proliferation. The results obtained thus strongly indicate that the resulting bulky micro/nanofiber layers are suitable for further testing with a view to their eventual application in the field of bone tissue engineering.
Zobrazit více v PubMed
Dwivedi R.; Kumar S.; Pandey R.; Mahajan A.; Nandana D.; Katti D. S.; Mehrotra D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofacial Res. 2020, 10, 381–388. 10.1016/j.jobcr.2019.10.003. PubMed DOI PMC
Nair N. R.; Sekhar V. C.; Nampoothiri K. M.; Pandey A.. 32—Biodegradation of Biopolymers. In Current Developments in Biotechnology and Bioengineering; Pandey A.; Negi S.; Soccol C. R., Eds.; Elsevier, 2017; pp 739–755.
McKeen L.12—Renewable Resource and Biodegradable Polymers. In The Effect of Sterilization on Plastics and Elastomers; 3rd ed.; McKeen L., Ed.; William Andrew Publishing: Boston, 2012; pp 305–317.
Erben J.; Jencova V.; Chvojka J.; Blazkova L.; Strnadova K.; Modrak M.; Kostakova E. K. The Combination of Meltblown Technology and Electrospinning—The Influence of the Ratio of Micro and Nanofibers on Cell Viability. Mater. Lett. 2016, 173, 153–157. 10.1016/j.matlet.2016.02.147. DOI
Klicova M.; Klapstova A.; Chvojka J.; Koprivova B.; Jencova V.; Horakova J. Novel Double-Layered Planar Scaffold Combining Electrospun PCL Fibers and PVA Hydrogels with High Shape Integrity and Water Stability. Mater. Lett. 2020, 263, 12728110.1016/j.matlet.2019.127281. DOI
Horakova J.; Mikes P.; Saman A.; Jencova V.; Klapstova A.; Svarcova T.; Ackermann M.; Novotny V.; Suchy T.; Lukas D. The Effect of Ethylene Oxide Sterilization on Electrospun Vascular Grafts Made from Biodegradable Polyesters. Mater. Sci. Eng. C 2018, 92, 132–142. 10.1016/j.msec.2018.06.041. PubMed DOI
Shkarina S.; Shkarin R.; Weinhardt V.; Melnik E.; Vacun G.; Kluger P. J.; Loza K.; Epple M.; Ivlev S. I.; Baumbach T.; Surmeneva M. A.; Surmenev R. A. 3D Biodegradable Scaffolds of Polycaprolactone with Silicate-Containing Hydroxyapatite Microparticles for Bone Tissue Engineering: High-Resolution Tomography and in Vitro Study. Sci. Rep. 2018, 8, 890710.1038/s41598-018-27097-7. PubMed DOI PMC
Wong H. M.; Chu P. K.; Leung F. K. L.; Cheung K. M. C.; Luk K. D. K.; Yeung K. W. K. Engineered Polycaprolactone–Magnesium Hybrid Biodegradable Porous Scaffold for Bone Tissue Engineering. Prog. Nat. Sci.: Mater. Int. 2014, 24, 561–567. 10.1016/j.pnsc.2014.08.013. DOI
Michel J.; Penna M.; Kochen J.; Cheung H. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells. Stem Cells Int. 2015, 2015, 30521710.1155/2015/305217. PubMed DOI PMC
Potrč T.; Baumgartner S.; Roškar R.; Planinšek O.; Lavrič Z.; Kristl J.; Kocbek P. Electrospun Polycaprolactone Nanofibers as a Potential Oromucosal Delivery System for Poorly Water-Soluble Drugs. Eur. J. Pharm. Sci. 2015, 75, 101–113. 10.1016/j.ejps.2015.04.004. PubMed DOI
Šrámková I. H.; Carbonell-Rozas L.; Horstkotte B.; Háková M.; Erben J.; Chvojka J.; Švec F.; Solich P.; García-Campaña A. M.; Šatínský D. Screening of Extraction Properties of Nanofibers in a Sequential Injection Analysis System Using a 3D Printed Device. Talanta 2019, 197, 517–521. 10.1016/j.talanta.2019.01.050. PubMed DOI
Háková M.; Havlíková L. C.; Chvojka J.; Erben J.; Solich P.; Švec F.; Šatínský D. A Comparison Study of Nanofiber, Microfiber, and New Composite Nano/Microfiber Polymers Used as Sorbents for on-Line Solid Phase Extraction in Chromatography System. Anal. Chim. Acta 2018, 1023, 44–52. 10.1016/j.aca.2018.04.023. PubMed DOI
RenChun F.; Jun D.; hui H.; Zhong-Cheng G. Fabrication and Evaluation of Polyaniline Nanofibers via Ethyl Cellulose Template. High Perform. Polym. 2014, 26, 27–33. 10.1177/0954008313495067. DOI
Beachley V.; Wen X. Effect of Electrospinning Parameters on the Nanofiber Diameter and Length. Mater. Sci. Eng. C 2009, 29, 663–668. 10.1016/j.msec.2008.10.037. PubMed DOI PMC
Hong J. K.; Bang J. Y.; Xu G.; Lee J.-H.; Kim Y.-J.; Lee H.-J.; Kim H. S.; Kwon S.-M. Thickness-Controllable Electrospun Fibers Promote Tubular Structure Formation by Endothelial Progenitor Cells. Int. J. Nanomed. 2015, 10, 1189–1200. 10.2147/IJN.S73096. PubMed DOI PMC
Valtera J.; Kalous T.; Pokorny P.; Batka O.; Bilek M.; Chvojka J.; Mikes P.; Kostakova E. K.; Zabka P.; Ornstova J.; Beran J.; Stanishevsky A.; Lukas D. Fabrication of Dual-Functional Composite Yarns with a Nanofibrous Envelope Using High Throughput AC Needleless and Collectorless Electrospinning. Sci. Rep. 2019, 9, 180110.1038/s41598-019-38557-z. PubMed DOI PMC
Pokorny P.; Kostakova E.; Sanetrnik F.; Mikes P.; Chvojka J.; Kalous T.; Bilek M.; Pejchar K.; Valtera J.; Lukas D. Effective AC Needleless and Collectorless Electrospinning for Yarn Production. Phys. Chem. Chem. Phys. 2014, 16, 26816–26822. 10.1039/C4CP04346D. PubMed DOI
Jirkovec R.; Kalous T.; Brayer W. A.; Stanishevky A. V.; Chvojka J. Production of Gelatin Nanofibrous Layers via Alternating Current Electrospinning. Mater. Lett. 2019, 252, 186–190. 10.1016/j.matlet.2019.05.132. DOI
Kalous T.; Holec P.; Jirkovec R.; Lukas D.; Chvojka J. Improved Spinnability of PA 6 Solutions Using AC Electrospinning. Mater. Lett. 2021, 283, 12876110.1016/j.matlet.2020.128761. DOI
Erben J.; Kalous T.; Chvojka J. Ac Bubble Electrospinning Technology for Preparation of Nanofibrous Mats. ACS Omega 2020, 5, 8268–8271. 10.1021/acsomega.0c00575. PubMed DOI PMC
Kessick R.; Fenn J.; Tepper G. The Use of AC Potentials in Electrospraying and Electrospinning Processes. Polymer 2004, 45, 2981–2984. 10.1016/j.polymer.2004.02.056. DOI
He H.; Wang Y.; Farkas B.; Nagy Z. K.; Molnar K. Analysis and Prediction of the Diameter and Orientation of AC Electrospun Nanofibers by Response Surface Methodology. Mater. Des. 2020, 194, 10890210.1016/j.matdes.2020.108902. DOI
Sivan M.; Madheswaran D.; Asadian M.; Cools P.; Thukkaram M.; Van Der Voort P.; Morent R.; De Geyter N.; Lukas D. Plasma Treatment Effects on Bulk Properties of Polycaprolactone Nanofibrous Mats Fabricated by Uncommon AC Electrospinning: A Comparative Study. Surf. Coat. Technol. 2020, 399, 12620310.1016/j.surfcoat.2020.126203. DOI
ISO 10993-5:2009. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/64/36406.html (accessed October 23, 2020).
Preparation of a Hydrogel Nanofiber Wound Dressing
The Optimization of Alternating Current Electrospun PA 6 Solutions Using a Visual Analysis System