Alternating Current Electrospinning of Polycaprolactone/Chitosan Nanofibers for Wound Healing Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
871650
European Union
871650
European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
PubMed
38794525
PubMed Central
PMC11125242
DOI
10.3390/polym16101333
PII: polym16101333
Knihovny.cz E-resources
- Keywords
- chitosan, electrospinning, nanofibers, polycaprolactone, tissue regeneration, wound healing,
- Publication type
- Journal Article MeSH
Traditional wound dressings have not been able to satisfy the needs of the regenerative medicine biomedical area. With the aim of improving tissue regeneration, nanofiber-based wound dressings fabricated by electrospinning (ES) processes have emerged as a powerful approach. Nowadays, nanofiber-based bioactive dressings are mainly developed with a combination of natural and synthetic polymers, such as polycaprolactone (PCL) and chitosan (CHI). Accordingly, herein, PCL/CHI nanofibers have been developed with varying PCL:CHI weight ratios (9:1, 8:2 and 7:3) or CHI viscosities (20, 100 and 600 mPa·s) using a novel alternating current ES (ACES) process. Such nanofibers were thoroughly characterized by determining physicochemical and nanomechanical properties, along with wettability, absorption capacity and hydrolytic plus enzymatic stability. Furthermore, PCL/CHI nanofiber biological safety was validated in terms of cytocompatibility and hemocompatibility (hemolysis < 2%), in addition to a notable antibacterial performance (bacterial reductions of 99.90% for S. aureus and 99.91% for P. aeruginosa). Lastly, the enhanced wound healing activity of PCL/CHI nanofibers was confirmed thanks to their ability to remarkably promote cell proliferation, which make them ideal candidates for long-term applications such as wound dressings.
See more in PubMed
Ibrahim H.M., Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020;90:106647. doi: 10.1016/j.polymertesting.2020.106647. DOI
Zhang X., Shi X., Gautrot J.E., Peijs T. Nanoengineered electrospun fibers and their biomedical applications: A review. Nanocomposites. 2021;7:1–34. doi: 10.1080/20550324.2020.1857121. DOI
Rahmati M., Mills D.K., Urbanska A.M., Saeb M.R., Venugopal J.R., Ramakrishna S., Mozafari M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021;117:100721. doi: 10.1016/j.pmatsci.2020.100721. DOI
Zheng Q., Xi Y., Weng Y. Functional electrospun nanofibers: Fabrication, properties, and applications in wound-healing process. RSC Adv. 2024;14:3359–3378. doi: 10.1039/D3RA07075A. PubMed DOI PMC
Zhang X., Wang Y., Gao Z., Mao X., Cheng J., Huang L., Tang J. Advances in wound dressing based on electrospinning nanofibers. J. Appl. Polym. Sci. 2024;141:e54746. doi: 10.1002/app.54746. DOI
Liu X., Xu H., Zhang M., Yu D.-G. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes. 2021;11:770. doi: 10.3390/membranes11100770. PubMed DOI PMC
Rezvani Ghomi E., Niazi M., Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. Polym. Adv. Technol. 2023;34:520–530. doi: 10.1002/pat.5929. DOI
Schoukens G. Advanced Textiles for Wound Care. Elsevier; Amsterdam, The Netherlands: 2019. Bioactive dressings to promote wound healing; pp. 135–167.
Mogoşanu G.D., Grumezescu A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014;463:127–136. doi: 10.1016/j.ijpharm.2013.12.015. PubMed DOI
Gobi R., Ravichandiran P., Babu R.S., Yoo D.J. Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers. 2021;13:1962. doi: 10.3390/polym13121962. PubMed DOI PMC
Joseph B., Augustine R., Kalarikkal N., Thomas S., Seantier B., Grohens Y. Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater. Today Commun. 2019;19:319–335. doi: 10.1016/j.mtcomm.2019.02.009. DOI
Azimi B., Maleki H., Zavagna L., De la Ossa J.G., Linari S., Lazzeri A., Danti S. Bio-Based Electrospun Fibers for Wound Healing. J. Funct. Biomater. 2020;11:67. doi: 10.3390/jfb11030067. PubMed DOI PMC
Angel N., Li S., Yan F., Kong L. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci. Technol. 2022;120:308–324. doi: 10.1016/j.tifs.2022.01.003. DOI
Chen S., Tian H., Mao J., Ma F., Zhang M., Chen F., Yang P. Preparation and application of chitosan-based medical electrospun nanofibers. Int. J. Biol. Macromol. 2023;226:410–422. doi: 10.1016/j.ijbiomac.2022.12.056. PubMed DOI
Ibrahim M.A., Alhalafi M.H., Emam E.-A.M., Ibrahim H., Mosaad R.M. A Review of Chitosan and Chitosan Nanofiber: Preparation, Characterization, and Its Potential Applications. Polymers. 2023;15:2820. doi: 10.3390/polym15132820. PubMed DOI PMC
Valachová K., El Meligy M.A., Šoltés L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int. J. Biol. Macromol. 2022;206:74–91. doi: 10.1016/j.ijbiomac.2022.02.117. PubMed DOI
Shalumon K.T., Anulekha K.H., Girish C.M., Prasanth R., Nair S.V., Jayakumar R. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr. Polym. 2010;80:413–419. doi: 10.1016/j.carbpol.2009.11.039. DOI
Van der Schueren L., Steyaert I., De Schoenmaker B., De Clerck K. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr. Polym. 2012;88:1221–1226. doi: 10.1016/j.carbpol.2012.01.085. DOI
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Sivan M., Madheswaran D., Hauzerova S., Novotny V., Hedvicakova V., Jencova V., Kostakova E.K., Schindler M., Lukas D. AC electrospinning: Impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater. Today Chem. 2022;26:101025. doi: 10.1016/j.mtchem.2022.101025. DOI
Sivan M., Madheswaran D., Valtera J., Kostakova E.K., Lukas D. Alternating current electrospinning: The impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater. Des. 2022;213:110308. doi: 10.1016/j.matdes.2021.110308. DOI
Farkas B., Balogh A., Farkas A., Marosi G., Nagy Z.K. Frequency and waveform dependence of alternating current electrospinning and their uses for drug dissolution enhancement. Int. J. Pharm. 2020;586:119593. doi: 10.1016/j.ijpharm.2020.119593. PubMed DOI
Balogh A., Cselkó R., Démuth B., Verreck G., Mensch J., Marosi G., Nagy Z.K. Alternating current electrospinning for preparation of fibrous drug delivery systems. Int. J. Pharm. 2015;495:75–80. doi: 10.1016/j.ijpharm.2015.08.069. PubMed DOI
Farkas B., Balogh A., Cselkó R., Molnár K., Farkas A., Borbás E., Marosi G., Nagy Z.K. Corona alternating current electrospinning: A combined approach for increasing the productivity of electrospinning. Int. J. Pharm. 2019;561:219–227. doi: 10.1016/j.ijpharm.2019.03.005. PubMed DOI
Jirkovec R., Holec P., Hauzerova S., Samkova A., Kalous T., Chvojka J. Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning. ACS Omega. 2021;6:9234–9242. doi: 10.1021/acsomega.1c00644. PubMed DOI PMC
Pokorny P., Kostakova E., Sanetrnik F., Mikes P., Chvojka J., Kalous T., Bilek M., Pejchar K., Valtera J., Lukas D. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 2014;16:26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI
Anisiei A., Oancea F., Marin L. Electrospinning of chitosan-based nanofibers: From design to prospective applications. Rev. Chem. Eng. 2023;39:31–70. doi: 10.1515/revce-2021-0003. DOI
Tamilarasi G.P., Sabarees G., Manikandan K., Gouthaman S., Alagarsamy V., Solomon V.R. Advances in electrospun chitosan nanofiber biomaterials for biomedical applications. Mater. Adv. 2023;4:3114–3139. doi: 10.1039/D3MA00010A. DOI
Oviedo M., Montoya Y., Agudelo W., García-García A., Bustamante J. Effect of Molecular Weight and Nanoarchitecture of Chitosan and Polycaprolactone Electrospun Membranes on Physicochemical and Hemocompatible Properties for Possible Wound Dressing. Polymers. 2021;13:4320. doi: 10.3390/polym13244320. PubMed DOI PMC
Sohi A.N., Naderi-Manesh H., Soleimani M., Mirzaei S., Delbari M., Dodel M. Influence of Chitosan Molecular Weight and Poly(ethylene oxide): Chitosan Proportion on Fabrication of Chitosan Based Electrospun Nanofibers. Polym. Sci. Ser. A. 2018;60:471–482. doi: 10.1134/S0965545X18040077. DOI
Prasad T., Shabeena E.A., Vinod D., Kumary T.V., Anil Kumar P.R. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J. Mater. Sci. Mater. Med. 2015;26:28. doi: 10.1007/s10856-014-5352-8. PubMed DOI
Steyaert I., Van der Schueren L., Rahier H., de Clerck K. An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. Macromol. Symp. 2012;321–322:71–75. doi: 10.1002/masy.201251111. DOI
Roozbahani F., Sultana N., Fauzi Ismail A., Nouparvar H. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application. J. Nanomater. 2013;2013:641502. doi: 10.1155/2013/641502. DOI
Test Methods for Primary Wound Dressings. Part 1: Aspects of Absorbency. ISO; Geneva, Switzerland: 2002.
Gefen A., Alves P., Beeckman D., Cullen B., Lázaro-Martínez J.L., Lev-Tov H., Najafi B., Santamaria N., Sharpe A., Swanson T., et al. How Should Clinical Wound Care and Management Translate to Effective Engineering Standard Testing Requirements from Foam Dressings? Mapping the Existing Gaps and Needs. Adv. Wound Care. 2024;13:34–52. doi: 10.1089/wound.2021.0173. PubMed DOI PMC
Biological Evaluation of Medical Devices—Tests for In Vitro Cytotoxicity. International Organization for Standarization; Geneva, Switzerland: 2009.
Nalezinková M. In vitro hemocompatibility testing of medical devices. Thromb. Res. 2020;195:146–150. doi: 10.1016/j.thromres.2020.07.027. PubMed DOI
Shanmugam P.S.T., Sampath T., Jagadeeswaran I., Krithaksha V., Bhalerao V.P., Thamizharasan S. Biocompatibility Protocols for Medical Devices and Materials. Elsevier; Amsterdam, The Netherlands: 2023. Hemocompatibility; pp. 91–125.
Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs. 2010;8:1567–1636. doi: 10.3390/md8051567. PubMed DOI PMC
Lazaridou M., Nanaki S., Zamboulis A., Papoulia C., Chrissafis K., Klonos P.A., Kyritsis A., Vergkizi-Nikolakaki S., Kostoglou M., Bikiaris D.N. Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug. Int. J. Pharm. 2021;606:120925. doi: 10.1016/j.ijpharm.2021.120925. PubMed DOI
Can-Herrera L.A., Oliva A.I., Dzul-Cervantes M.A.A., Pacheco-Salazar O.F., Cervantes-Uc J.M. Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers. 2021;13:662. doi: 10.3390/polym13040662. PubMed DOI PMC
Weißpflog J., Vehlow D., Müller M., Kohn B., Scheler U., Boye S., Schwarz S. Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state—Insights by various complimentary methods. Int. J. Biol. Macromol. 2021;171:242–261. doi: 10.1016/j.ijbiomac.2021.01.010. PubMed DOI
Jhala D., Rather H., Vasita R. Polycaprolactone–chitosan nanofibers influence cell morphology to induce early osteogenic differentiation. Biomater. Sci. 2016;4:1584–1595. doi: 10.1039/C6BM00492J. PubMed DOI
Miguel S.P., Figueira D.R., Simões D., Ribeiro M.P., Coutinho P., Ferreira P., Correia I.J. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf. B Biointerfaces. 2018;169:60–71. doi: 10.1016/j.colsurfb.2018.05.011. PubMed DOI
Yang S., Li X., Liu P., Zhang M., Wang C., Zhang B. Multifunctional Chitosan/Polycaprolactone Nanofiber Scaffolds with Varied Dual-Drug Release for Wound-Healing Applications. ACS Biomater. Sci. Eng. 2020;6:4666–4676. doi: 10.1021/acsbiomaterials.0c00674. PubMed DOI
Salgado C.L., Sanchez E.M.S., Mano J.F., Moraes A.M. Characterization of chitosan and polycaprolactone membranes designed for wound repair application. J. Mater. Sci. 2012;47:659–667. doi: 10.1007/s10853-011-5836-6. DOI
Miao S., Cao X., Lu M., Liu X. Tailoring micro/nano-materials with special wettability for biomedical devices. Biomed. Technol. 2023;2:15–30. doi: 10.1016/j.bmt.2022.11.005. DOI
Raman A., Jayan J.S., Deeraj B.D.S., Saritha A., Joseph K. Electrospun Nanofibers as Effective Superhydrophobic Surfaces: A Brief review. Surf. Interfaces. 2021;24:101140. doi: 10.1016/j.surfin.2021.101140. DOI
Martins A., Pinho E.D., Faria S., Pashkuleva I., Marques A.P., Reis R.L., Neves N.M. Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small. 2009;5:1195–1206. doi: 10.1002/smll.200801648. PubMed DOI
Fadaie M., Mirzaei E., Geramizadeh B., Asvar Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr. Polym. 2018;199:628–640. doi: 10.1016/j.carbpol.2018.07.061. PubMed DOI
He C., Yu B., Lv Y., Huang Y., Guo J., Li L., Chen M., Zheng Y., Liu M., Guo S., et al. Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS Appl. Mater. Interfaces. 2022;14:32799–32812. doi: 10.1021/acsami.2c04323. PubMed DOI
Browning P., White R.J., Rowell T. Comparative evaluation of the functional properties of superabsorbent dressings and their effect on exudate management. J. Wound Care. 2016;25:452–462. doi: 10.12968/jowc.2016.25.8.452. PubMed DOI
Lazaridou M., Moroni S., Klonos P., Kyritsis A., Bikiaris D.N., Lamprou D.A. 3D-printed hydrogels based on amphiphilic chitosan derivative loaded with levofloxacin for wound healing applications. Int. J. Polym. Mater. Polym. Biomater. 2024:1–18. doi: 10.1080/00914037.2024.2314610. DOI
Thomas L.V. Biomedical Product and Materials Evaluation. Elsevier; Amsterdam, The Netherlands: 2022. Evaluation of polymeric biomaterials used as wound care products; pp. 63–94.
Boinovich L., Emelyanenko A.M., Pashinin A.S. Analysis of Long-Term Durability of Superhydrophobic Properties under Continuous Contact with Water. ACS Appl. Mater. Interfaces. 2010;2:1754–1758. doi: 10.1021/am100241s. PubMed DOI
Verho T., Bower C., Andrew P., Franssila S., Ikkala O., Ras R.H.A. Mechanically Durable Superhydrophobic Surfaces. Adv. Mater. 2011;23:673–678. doi: 10.1002/adma.201003129. PubMed DOI
Dias J.R., Sousa A., Augusto A., Bártolo P.J., Granja P.L. Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study. Polymers. 2022;14:3397. doi: 10.3390/polym14163397. PubMed DOI PMC
Poshina D.N., Raik S.V., Poshin A.N., Skorik Y.A. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polym. Degrad. Stab. 2018;156:269–278. doi: 10.1016/j.polymdegradstab.2018.09.005. DOI
Balusamy B., Senthamizhan A., Uyar T. Electrospun Materials for Tissue Engineering and Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2017. In vivo safety evaluations of electrospun nanofibers for biomedical applications; pp. 101–113.
Alavi M., Nokhodchi A. Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose. 2022;29:1331–1347. doi: 10.1007/s10570-021-04412-6. DOI
Serra R., Grande R., Butrico L., Rossi A., Settimio U.F., Caroleo B., Amato B., Gallelli L., De Franciscis S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti-Infect. Ther. 2015;13:605–613. doi: 10.1586/14787210.2015.1023291. PubMed DOI
Bagheri M., Validi M., Gholipour A., Makvandi P., Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng. Transl. Med. 2022;7:e10254. doi: 10.1002/btm2.10254. PubMed DOI PMC
Olmo J.A.-D., Ruiz-Rubio L., Pérez-Alvarez L., Sáez-Martínez V., Vilas-Vilela J.L. Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings. 2020;10:139. doi: 10.3390/coatings10020139. DOI
Singh S., Young A., McNaught C.-E. The physiology of wound healing. Surgery. 2017;35:473–477. doi: 10.1016/j.mpsur.2017.06.004. DOI
de Oliveira Gonzalez A.C., Costa T.F., Andrade Z.d.A., Medrado A.R.A.P. Wound healing—A literature review. An. Bras. Dermatol. 2016;91:614–620. doi: 10.1590/abd1806-4841.20164741. PubMed DOI PMC
Landén N.X., Li D., Ståhle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016;73:3861–3885. doi: 10.1007/s00018-016-2268-0. PubMed DOI PMC