Thermally Stabilised Poly(vinyl alcohol) Nanofibrous Materials Produced by Scalable Electrospinning: Applications in Tissue Engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IES\R3\183098
Royal Society
N/A
Birmingham Orthopaedic Charity
CZ.02.01.01/00/22_008/0004562
European Union
PubMed
39065397
PubMed Central
PMC11281220
DOI
10.3390/polym16142079
PII: polym16142079
Knihovny.cz E-zdroje
- Klíčová slova
- cross-linking, electrospinning, non-woven fibres, poly(vinyl alcohol), tissue engineering,
- Publikační typ
- časopisecké články MeSH
Electrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents. Despite the small differences in the PVA chemical structure, the changes in the material properties were substantial. The higher degree of hydrolysis resulted in non-woven supports with thinner fibres (285 ± 81 nm c.f. 399 ± 153 nm) that were mechanically stronger by 62% (±11%) and almost twice as more crystalline than those from 98% hydrolysed PVA. Although prolonged heat treatment (16 h) did not influence fibre morphology, it reduced the crystallinity and tensile strength for both sets of materials. All samples demonstrated a lack or very low degree of haemolysis (<5%), and there were no notable changes in their anticoagulant activity (≤3%). Thrombus formation, on the other hand, increased by 82% (±18%) for the 98% hydrolysed samples and by 71% (±10%) for the 99% hydrolysed samples, with heat treatment up to 16 h, as a direct consequence of the preservation of the fibrous morphology. 3T3 mouse fibroblasts showed the best proliferation on scaffolds that were thermally stabilised for 4 and 8 h. Overall these scaffolds show potential as 'greener' alternatives to other electrospun tissue engineering materials, especially in cases where they may be used as delivery vectors for heat tolerant additives.
Aston Advanced Materials Research Centre Aston University Birmingham B4 7ET UK
College of Health and Life Sciences Aston University Birmingham B4 7ET UK
Department of Haematology Regional Hospital Liberec 460 01 Liberec Czech Republic
The Royal Orthopaedic Hospital NHS Foundation Trust Birmingham B31 2AP UK
Zobrazit více v PubMed
Bakhshandeh B., Zarrintaj P., Oftadeh M.O., Keramati F., Fouladiha H., Sohrabi-jahromi S., Ziraksaz Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol. Genet. Eng. Rev. 2017;33:144–172. doi: 10.1080/02648725.2018.1430464. PubMed DOI
Rahmati M., Mills D.K., Urbanska A.M., Saeb M.R., Venugopal J.R., Ramakrishna S., Mozafari M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021;117:100721. doi: 10.1016/j.pmatsci.2020.100721. DOI
Pina S., Ribeiro V.P., Marques C.F., Maia F.R., Silva T.H., Reis R.L., Oliveira J.M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials. 2019;12:1824. doi: 10.3390/ma12111824. PubMed DOI PMC
Zhao Y., Zhang Z., Pan Z., Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration. 2021;1:20210089. doi: 10.1002/EXP.20210089. PubMed DOI PMC
Wan X., Zhao Y., Li Z., Li L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration. 2022;2:20210029. doi: 10.1002/EXP.20210029. PubMed DOI PMC
Zulkifli M.Z.A., Nordin D., Shaari N., Kamarudin S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers. 2023;15:2418. doi: 10.3390/polym15112418. PubMed DOI PMC
Del Olmo J., Mikes P., Asatiani N., Alonso J., Martínez V., González R. Alternating Current Electrospinning of Polycaprolactone/Chitosan Nanofibers for Wound Healing Applications. Polymers. 2024;16:1333. doi: 10.3390/polym16101333. PubMed DOI PMC
Tan G.Z., Zhou Y.G. Electrospinning of biomimetic fibrous scaffolds for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2020;69:947–960. doi: 10.1080/00914037.2019.1636248. DOI
Bigdeli A.K., Lyer S., Detsch R., Boccaccini A.R., Beier J.P., Kneser U., Horch R.E., Arkudas A. Nanotechnologies in tissue engineering. Nanotechnol. Rev. 2013;2:411–425. doi: 10.1515/ntrev-2013-0015. DOI
Aliko K., Aldakhlalla M., Leslie L., Worthington T., Topham P., Theodosiou E. Poly(butylene succinate) fibrous dressings containing natural antimicrobial agents. J. Ind. Text. 2022;51:6948S–6967S. doi: 10.1177/1528083720987209. DOI
Elmarco NS 8S1600U: Scalable Industrial Production Line. [(accessed on 4 April 2020)]. Available online: https://www.elmarco.com/production-lines/ns-8s1600u.
Bionicia. Fluidnatek HT. [(accessed on 16 March 2023)]. Available online: https://www.nanoscience.com/products/electrospinning-equipment/fluidnatek-ht/
Li L.F., Hao R.N., Qin J.J., Song J., Chen X.F., Rao F., Zhai J.L., Zhao Y., Zhang L.Q., Xue J.J. Electrospun Fibers Control Drug Delivery for Tissue Regeneration and Cancer Therapy. Adv. Fiber Mater. 2022;4:1375–1413. doi: 10.1007/s42765-022-00198-9. DOI
Zhang C., Yang X., Yu L., Chen X., Zhang J., Zhang S., Wu S. Electrospun polyasparthydrazide nanofibrous hydrogel loading with in-situ synthesized silver nanoparticles for full-thickness skin wound healing application. Mater. Des. 2024;239:112818. doi: 10.1016/j.matdes.2024.112818. DOI
Lannutti J., Reneker D., Ma T., Tomasko D., Farson D.F. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2007;27:504–509. doi: 10.1016/j.msec.2006.05.019. DOI
Teixeira M.A., Amorim M.T.P., Felgueiras H.P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers. 2020;12:7. doi: 10.3390/polym12010007. PubMed DOI PMC
Baker M.I., Walsh S.P., Schwartz Z., Boyan B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100B:1451–1457. doi: 10.1002/jbm.b.32694. PubMed DOI
Chong S.F., Smith A.A.A., Zelikin A.N. Microstructured, Functional PVA Hydrogels through Bioconjugation with Oligopeptides under Physiological Conditions. Small. 2013;9:942–950. doi: 10.1002/smll.201201774. PubMed DOI
Hassan C.M., Peppas N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolym./Pva Hydrogels/Anionic Polym. Nanocompos. 2000;153:37–65.
Diez B., Homer W.J.A., Leslie L.J., Kyriakou G., Rosal R., Topham P.D., Theodosiou E. Chemically cross-linked poly(vinyl alcohol) electrospun fibrous mats as wound dressing materials. J. Chem. Technol. Biotechnol. 2022;97:620–632. doi: 10.1002/jctb.7006. DOI
Vashisth P., Pruthi V. Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;67:304–312. doi: 10.1016/j.msec.2016.05.049. PubMed DOI
Dabiri G., Damstetter E., Phillips T. Choosing a Wound Dressing Based on Common Wound Characteristics. Adv. Wound Care. 2016;5:32–41. doi: 10.1089/wound.2014.0586. PubMed DOI PMC
Iacob A.T., Dragan M., Ionescu O.M., Profire L., Ficai A., Andronescu E., Georgeta L., Lupascu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics. 2020;12:983. doi: 10.3390/pharmaceutics12100983. PubMed DOI PMC
Kus K.J.B., Ruiz E.S. Wound Dressings—A Practical Review. Curr. Dermatol. Rep. 2020;9:298–308. doi: 10.1007/s13671-020-00319-w. DOI
Homer W.J.A., Lisnenko M., Gardner A.C., Kostakova E.K., Valtera J., Wall I.B., Jencova V., Topham P.D., Theodosiou E. Assessment of thermally stabilized electrospun poly(vinyl alcohol) materials as cell permeable membranes for a novel blood salvage device. Biomater. Adv. 2023;144:213197. doi: 10.1016/j.bioadv.2022.213197. PubMed DOI
Homer W.J.A. Thermally Stabilised, Crosslinker-Free Poly (Vinyl Alcohol) Nanofibers Produced by Electrospinning: Applications in Cell Processing and Tissue Engineering. Aston University; Birmingham, UK: 2023.
Koprivova B., Lisnenko M., Solarska-Sciuk K., Prochazkova R., Novotny V., Mullerova J., Mikes P., Jencova V. Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polym. Lett. 2020;14:987–1000. doi: 10.3144/expresspolymlett.2020.80. DOI
Horakova J., Mikes P., Saman A., Svarcova T., Jencova V., Suchy T., Heczkova B., Jakubkova S., Jirousova J., Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018;82:330–335. doi: 10.1016/j.msec.2017.05.011. PubMed DOI
Kim B.S., Mooney D.J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16:224–230. doi: 10.1016/S0167-7799(98)01191-3. PubMed DOI
Chen S.X., Li R.Q., Li X.R., Xie J.W. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev. 2018;132:188–213. doi: 10.1016/j.addr.2018.05.001. PubMed DOI
Muthukrishnan L. An overview on electrospinning and its advancement toward hard and soft tissue engineering applications. Colloid Polym. Sci. 2022;300:875–901. doi: 10.1007/s00396-022-04997-9. PubMed DOI PMC
Park J.-C., Ito T., Kim K.-O., Kim K.-W., Kim B.-S., Khil M.-S., Kim H.-Y., Kim I.-S. Electrospun poly(vinyl alcohol) nanofibers: Effects of degree of hydrolysis and enhanced water stability. Polym. J. 2010;42:273–276. doi: 10.1038/pj.2009.340. DOI
Tretinnikov O.N., Zagorskaya S.A. Determination of the degree of crystallinity of poly(vinyl alcohol) by FT-IR spectroscopy. J. Appl. Spectrosc. 2012;79:521–526. doi: 10.1007/s10812-012-9634-y. DOI
Alhosseini S.N., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A., Kargozar S., Jalali N. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 2012;7:25–34. doi: 10.2147/ijn.s25376. PubMed DOI PMC
Jipa I.M., Stroescu M., Stoica-Guzun A., Dobre T., Jinga S., Zaharescu T. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012;278:82–87. doi: 10.1016/j.nimb.2012.02.024. DOI
Meszlényi G., Körtvélyessy G. Direct determination of vinyl acetate content of ethylene-vinyl acetate copolymers in thick films by infrared spectroscopy. Polym. Test. 1999;18:551–557. doi: 10.1016/S0142-9418(98)00053-1. DOI
Yang H.G., Xu S.B., Jiang L., Dan Y. Thermal decomposition behavior of poly (vinyl alcohol) with different hydroxyl content. J. Macromol. Sci. Part B Phys. 2012;51:464–480. doi: 10.1080/00222348.2011.597687. DOI
Miraftab M., Saifullah A.N., Çay A. Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: Comparative study on methanol and heat-based crosslinking. J. Mater. Sci. 2014;50:1943–1957. doi: 10.1007/s10853-014-8759-1. DOI
Song Y., Zhang S., Kang J., Chen J., Cao Y. Water absorption dependence of the formation of poly(vinyl alcohol)-iodine complexes for poly(vinyl alcohol) films. RSC Adv. 2021;11:28785–28796. doi: 10.1039/D1RA04867H. PubMed DOI PMC
Restrepo I., Medina C., Meruane V., Akbari-Fakhrabadi A., Flores P., Rodriguez-Llamazares S. The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polim. Cienc. E Tecnol. 2018;28:169–177. doi: 10.1590/0104-1428.03117. DOI
Fong R.J., Robertson A., Mallon P.E., Thompson R.L. The Impact of Plasticizer and Degree of Hydrolysis on Free Volume of Poly(vinyl alcohol) Films. Polymers. 2018;10:1036. doi: 10.3390/polym10091036. PubMed DOI PMC
Liebschner M., Bucklen B., Wettergreen M. Mechanical Aspects of Tissue Engineering. Semin. Plast. Surg. 2005;19:217–228. doi: 10.1055/s-2005-919717. DOI
Sahithi K., Swetha M., Ramasamya K., Sriniyasan N., Selyamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 2010;46:281–283. doi: 10.1016/j.ijbiomac.2010.01.006. PubMed DOI
Zuidema J.M., Gilbert R.J. An Argument for the Importance of Material Property Characterization of Hydrogels; Proceedings of the IEEE 37th Annual Northeast Bioengineering Conference (NEBEC), Rensselaer Polytechn Inst (RPI); Troy, NY, USA. 1–3 April 2011.
Zuo B., Hu Y.Y., Lu X.L., Zhang S.X., Fan H., Wang X.P. Surface Properties of Poly(vinyl alcohol) Films Dominated by Spontaneous Adsorption of Ethanol and Governed by Hydrogen Bonding. J. Phys. Chem. C. 2013;117:3396–3406. doi: 10.1021/jp3113304. DOI
Menzies K.L., Jones L. The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optom. Vis. Sci. 2010;87:387–399. doi: 10.1097/OPX.0b013e3181da863e. PubMed DOI
Al-Azzam N., Alazzam A. Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. PLoS ONE. 2022;17:e0269914. doi: 10.1371/journal.pone.0269914. PubMed DOI PMC
Moeendarbary E., Harris A.R. Cell mechanics: Principles, practices, and prospects. Wiley Interdiscip. Rev. Syst. Biol. Med. 2014;6:371–388. doi: 10.1002/wsbm.1275. PubMed DOI PMC
Miller C.H., Platt S.J., Rice A.S., Kelly F., Soucie J.M., Hemophilia Inhibitor Res Study I. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor measurement during replacement therapy and facilitate inhibitor surveillance. J. Thromb. Haemost. 2012;10:1055–1061. doi: 10.1111/j.1538-7836.2012.04705.x. PubMed DOI PMC
Biological evaluation of medical devices—Part 4: Selection of tests for interactions with blood. International Organization for Standardization; Geneva, Switzerland: 2017.