Interaction of the Nanoparticles and Plants in Selective Growth Stages-Usual Effects and Resulting Impact on Usage Perspectives

. 2022 Sep 15 ; 11 (18) : . [epub] 20220915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36145807

Grantová podpora
QK22010031 Ministry of Agriculture of the Czech Republic
IGA-ZF/2021-SI200 Mendel University in Brno

Nanotechnologies have received tremendous attention since their discovery. The current studies show a high application potential of nanoparticles for plant treatments, where the general properties of nanoparticles such as their lower concentrations for an appropriate effects, the gradual release of nanoparticle-based nutrients or their antimicrobial effect are especially useful. The presented review, after the general introduction, analyzes the mechanisms that are described so far in the uptake and movement of nanoparticles in plants. The following part evaluates the available literature on the application of nanoparticles in the selective growth stage, namely, it compares the observed effect that they have when they are applied to seeds (nanopriming), to seedlings or adult plants. Based on the research that has been carried out, it is evident that the most common beneficial effects of nanopriming are the improved parameters for seed germination, the reduced contamination by plant pathogens and the higher stress tolerance that they generate. In the case of plant treatments, the most common applications are for the purpose of generating protection against plant pathogens, but better growth and better tolerance to stresses are also frequently observed. Hypotheses explaining these observed effects were also mapped, where, e.g., the influence that they have on photosynthesis parameters is described as a frequent growth-improving factor. From the consortium of the used nanoparticles, those that were most frequently applied included the principal components that were derived from zinc, iron, copper and silver. This observation implies that the beneficial effect that nanoparticles have is not necessarily based on the nutritional supply that comes from the used metal ions, as they can induce these beneficial physiological changes in the treated cells by other means. Finally, a critical evaluation of the strengths and weaknesses of the wider use of nanoparticles in practice is presented.

Zobrazit více v PubMed

Zítka O., Brně V.U.T.V., Univerzita M. Moderní Nanotechnologie na Počátku 21. Století: Kolekce Učebních Textů Projektu OPVK NANOTEAM. Vysoké Učení Technické v Brně; Brno, Czechia: 2013.

Hasan S. A Review on Nanoparticles: Their Synthesis and Types. Res. J. Recent. Sci. 2015;4:1–3.

Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC

Elmer W., White J.C. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 2018;56:111–133. doi: 10.1146/annurev-phyto-080417-050108. PubMed DOI

Fernando S.S.N., Gunasekara T., Holton J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis. 2018;8:2–11. doi: 10.4038/sljid.v8i1.8167. DOI

Dizaj S.M., Mennati A., Jafari S., Khezri K., Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015;5:19–23. doi: 10.5681/apb.2015.003. PubMed DOI PMC

Ealias A.M., Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017;263:032019. doi: 10.1088/1757-899X/263/3/032019. DOI

Sanzari I., Leone A., Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front Bioeng Biotechnol. 2019;7:120. doi: 10.3389/fbioe.2019.00120. PubMed DOI PMC

Machado S., Pacheco J.G., Nouws H.P., Albergaria J.T., Delerue-Matos C. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total Env. 2015;533:76–81. doi: 10.1016/j.scitotenv.2015.06.091. PubMed DOI

Yu M., Yao J., Liang J., Zeng Z., Cui B., Zhao X., Sun C., Wang Y., Liu G., Cui H. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 2017;7:11271–11280. doi: 10.1039/C6RA27345A. DOI

Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC

Jurkow R., Pokluda R., Sekara A., Kalisz A. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biol. 2020;20:290. doi: 10.1186/s12870-020-02490-5. PubMed DOI PMC

Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Env. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI

Fatima F., Hashim A., Anees S. Efficacy of nanoparticles as nanofertilizer production: A review. Env. Sci. Pollut. Res. Int. 2021;28:1292–1303. doi: 10.1007/s11356-020-11218-9. PubMed DOI

Jakhar A.M., Aziz I., Kaleri A.R., Hasnain M., Haider G., Ma J., Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact. 2022;27:100411. doi: 10.1016/j.impact.2022.100411. PubMed DOI

Duhan J.S., Kumar R., Kumar N., Kaur P., Nehra K., Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017;15:11–23. doi: 10.1016/j.btre.2017.03.002. PubMed DOI PMC

Hong J., Wang C., Wagner D.C., Gardea-Torresdey J.L., He F., Rico C.M. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano. 2021;8:1196–1210. doi: 10.1039/D0EN01129K. DOI

Azizi-Lalabadi M., Ehsani A., Divband B., Alizadeh-Sani M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 2019;9:17439. doi: 10.1038/s41598-019-54025-0. PubMed DOI PMC

Usman M.S., El Zowalaty M.E., Shameli K., Zainuddin N., Salama M., Ibrahim N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013;8:4467–4479. doi: 10.2147/IJN.S50837. PubMed DOI PMC

Aliasghari A., Khorasgani M.R., Vaezifar S., Rahimi F., Younesi H., Khoroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: An in vitro study. Iran. J. Microbiol. 2016;8:93–100. PubMed PMC

Kalwar K., Shan D. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism—A mini review. Micro Nano Lett. 2018;13:277–280. doi: 10.1049/mnl.2017.0648. DOI

Li Y., Leung P., Yao L., Song Q.W., Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 2006;62:58–63. doi: 10.1016/j.jhin.2005.04.015. PubMed DOI

Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI

Burman U., Saini M., Kumar P. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 2013;95:605–612. doi: 10.1080/02772248.2013.803796. DOI

Novotný D., Baránek M., Eichmeier A., Salava J., Peňázová E., Pečenka J., Koudela M. Prostředky Diagnostiky A Ochrany Proti Vybraným Druhům Škodlivých Mikroorganismů Zelí. Výzkumný Ústav Rostlinné Výroby; Praha, Czech Republic: 2019.

Ameh T., Sayes C.M. The potential exposure and hazards of copper nanoparticles: A review. Env. Toxicol. Pharm. 2019;71:103220. doi: 10.1016/j.etap.2019.103220. PubMed DOI

Martins C.H., Carvalho T.C., Souza M.G., Ravagnani C., Peitl O., Zanotto E.D., Panzeri H., Casemiro L.A. Assessment of antimicrobial effect of Biosilicate(R) against anaerobic, microaerophilic and facultative anaerobic microorganisms. J. Mater. Sci. Mater. Med. 2011;22:1439–1446. doi: 10.1007/s10856-011-4330-7. PubMed DOI

Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC

Parra A., Toro M., Jacob R., Navarrete P., Troncoso M., Figueroa G., Reyes-Jara A. Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. Braz. J. Microbiol. 2018;49((Suppl 1)):113–118. doi: 10.1016/j.bjm.2018.06.008. PubMed DOI PMC

Marthandan V., Geetha R., Kumutha K., Renganathan V.G., Karthikeyan A., Ramalingam J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol Sci. 2020:8258. doi: 10.3390/ijms21218258. PubMed DOI PMC

Do Espirito Santo Pereira A., Caixeta Oliveira H., Fernandes Fraceto L., Santaella C. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials. 2021;11:267. doi: 10.3390/nano11020267. PubMed DOI PMC

Singh V.P., Singh S., Tripathi D.K., Prasad S.M., Chauhan D.K. Plant Responses to Nanomaterials. Springer; Berlin/Heidelberg, Germany: 2021.

Ma X., Geisler-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Env. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI

Dimkpa C.O., McLean J.E., Latta D.E., Manangón E., Britt D.W., Johnson W.P., Boyanov M.I., Anderson A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanoparticle Res. 2012;14:1125. doi: 10.1007/s11051-012-1125-9. DOI

Wang F., Liu X., Shi Z., Tong R., Adams C.A., Shi X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Chemosphere. 2016;147:88–97. doi: 10.1016/j.chemosphere.2015.12.076. PubMed DOI

Tripathi D.K., Tripathi A., Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., Upadhyay R.G., et al. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review. Front. Microbiol. 2017;8:07. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC

Hubbard J.D., Lui A., Landry M.P. Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Curr. Opin. Chem. Eng. 2020;30:135–143. doi: 10.1016/j.coche.2020.100659. DOI

Committee E.S., More S., Bampidis V., Benford D., Bragard C., Halldorsson T., Hernandez-Jerez A., Hougaard Bennekou S., Koutsoumanis K., Lambre C., et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021;19:e06768. doi: 10.2903/j.efsa.2021.6768. PubMed DOI PMC

Allan J., Belz S., Hoeveler A., Hugas M., Okuda H., Patri A., Rauscher H., Silva P., Slikker W., Sokull-Kluettgen B. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol. 2021;122:104885. doi: 10.1016/j.yrtph.2021.104885. PubMed DOI PMC

Duan H., Wang D., Li Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015;44:5778–5792. doi: 10.1039/C4CS00363B. PubMed DOI

Kharissova O.V., Dias H.V., Kharisov B.I., Perez B.O., Perez V.M. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–248. doi: 10.1016/j.tibtech.2013.01.003. PubMed DOI

Alavi M., Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov. Today. 2021;26:1953–1962. doi: 10.1016/j.drudis.2021.03.030. PubMed DOI

Avellan A., Yun J., Morais B.P., Clement E.T., Rodrigues S.M., Lowry G.V. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. Env. Sci. Technol. 2021;55:13417–13431. doi: 10.1021/acs.est.1c00178. PubMed DOI

Ha N., Seo E., Kim S., Lee S.J. Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Sci. Rep. 2021;11:11556. doi: 10.1038/s41598-021-91073-x. PubMed DOI PMC

Anjum S.A., Tanveer M., Ashraf U., Hussain S., Shahzad B., Khan I., Wang L. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Env. Sci. Pollut. Res. Int. 2016;23:17132–17141. doi: 10.1007/s11356-016-6894-8. PubMed DOI

Yeats T.H., Rose J.K. The formation and function of plant cuticles. Plant Physiol. 2013;163:5–20. doi: 10.1104/pp.113.222737. PubMed DOI PMC

Heredia-Guerrero J.A., Benitez J.J., Dominguez E., Bayer I.S., Cingolani R., Athanassiou A., Heredia A. Infrared and Raman spectroscopic features of plant cuticles: A review. Front. Plant Sci. 2014;5:305. doi: 10.3389/fpls.2014.00305. PubMed DOI PMC

Guzman-Delgado P., Graca J., Cabral V., Gil L., Fernandez V. The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example. Physiol. Plant. 2016;157:205–220. doi: 10.1111/ppl.12414. PubMed DOI

Lv G., Du C., Ma F., Shen Y., Zhou J. In situ detection of rice leaf cuticle responses to nitrogen supplies by depth-profiling Fourier transform photoacoustic spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020;228:117759. doi: 10.1016/j.saa.2019.117759. PubMed DOI

Li C., Wang P., Lombi E., Cheng M., Tang C., Howard D.L., Menzies N.W., Kopittke P.M. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. J. Exp. Bot. 2018;69:2717–2729. doi: 10.1093/jxb/ery085. PubMed DOI PMC

Wang P., Lombi E., Zhao F.J., Kopittke P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016;21:699–712. doi: 10.1016/j.tplants.2016.04.005. PubMed DOI

Zhu J., Li J., Shen Y., Liu S., Zeng N., Zhan X., White J.C., Gardea-Torresdey J., Xing B. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ. Sci. Nano. 2020;7:3901–3913. doi: 10.1039/D0EN00658K. DOI

Lin S., Reppert J., Hu Q., Hudson J.S., Reid M.L., Ratnikova T.A., Rao A.M., Luo H., Ke P.C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5:1128–1132. doi: 10.1002/smll.200801556. PubMed DOI

Uzu G., Sobanska S., Sarret G., Muñoz M., Dumat C. Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environ. Sci. Technol. Am. Chem. Soc. 2010;44:1036–1042. doi: 10.1021/es902190u. PubMed DOI

Eichert T., Goldbach H.E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces--further evidence for a stomatal pathway. Physiol. Plant. 2008;132:491–502. doi: 10.1111/j.1399-3054.2007.01023.x. PubMed DOI

Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008;134:151–160. doi: 10.1111/j.1399-3054.2008.01135.x. PubMed DOI

Kaiser H. Stomatal uptake of mineral particles from a sprayed suspension containing an organosilicone surfactant. J. Plant Nutr. Soil Sci. 2014;177:869–874. doi: 10.1002/jpln.201300607. DOI

Magniont C., Escadeillas G., Coutand M., Oms-Multon C. Use of plant aggregates in building ecomaterials. Eur. J. Environ. Civ. Eng. 2012;16:s17–s33. doi: 10.1080/19648189.2012.682452. DOI

Benzon H.R.L., Rubenecia M.R.U., Ultra J., Venecio U., Lee S.C. Nano-fertilizer affects the growth, development, and chemical properties of rice. Int. J. Agri. Agri. R. 2015;7:105–117.

Lawrence M., Fodde E., Paine K., Walker P. Hygrothermal Performance of an Experimental Hemp-Lime Building. Key Eng. Mater. 2012;517:413–421. doi: 10.4028/www.scientific.net/KEM.517.413. DOI

Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI

Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010;179:154–163. doi: 10.1016/j.plantsci.2010.04.012. DOI

Li C., Wang P., Van Der Ent A., Cheng M., Jiang H., Lund Read T., Lombi E., Tang C., De Jonge M.D., Menzies N.W. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Ann. Bot. 2019;123:57–68. doi: 10.1093/aob/mcy135. PubMed DOI PMC

Larue C., Laurette J., Herlin-Boime N., Khodja H., Fayard B., Flank A.M., Brisset F., Carriere M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Sci. Total Env. 2012;431:197–208. doi: 10.1016/j.scitotenv.2012.04.073. PubMed DOI

Zhao L., Peralta-Videa J.R., Ren M., Varela-Ramirez A., Li C., Hernandez-Viezcas J.A., Aguilera R.J., Gardea-Torresdey J.L. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem. Eng. J. 2012;184:1–8. doi: 10.1016/j.cej.2012.01.041. DOI

Deng Y.-Q., White J.C., Xing B.-S. Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. J. Zhejiang Univ. SCIENCE A. 2014;15:552–572. doi: 10.1631/jzus.A1400165. DOI

Sun D., Hussain H.I., Yi Z., Siegele R., Cresswell T., Kong L., Cahill D.M. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 2014;33:1389–1402. doi: 10.1007/s00299-014-1624-5. PubMed DOI

Wang Z., Xie X., Zhao J., Liu X., Feng W., White J.C., Xing B. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.) Env. Sci. Technol. 2012;46:4434–4441. doi: 10.1021/es204212z. PubMed DOI

Zhu Z.J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 2012;46:12391–12398. doi: 10.1021/es301977w. PubMed DOI

Pérez-de-Luque A. Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Front. Environ. Sci. 2017;5:12. doi: 10.3389/fenvs.2017.00012. DOI

Larue C., Veronesi G., Flank A.M., Surble S., Herlin-Boime N., Carriere M. Comparative uptake and impact of TiO(2) nanoparticles in wheat and rapeseed. J. Toxicol. Env. Health A. 2012;75:722–734. doi: 10.1080/15287394.2012.689800. PubMed DOI

Lv J., Zhang S., Luo L., Zhang J., Yang K., Christie P. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci. Nano. 2015;2:68–77. doi: 10.1039/C4EN00064A. DOI

Avellan A., Yun J., Zhang Y., Spielman-Sun E., Unrine J.M., Thieme J., Li J., Lombi E., Bland G., Lowry G.V. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano. 2019;13:5291–5305. doi: 10.1021/acsnano.8b09781. PubMed DOI

Cvjetko P., Zovko M., Stefanic P.P., Biba R., Tkalec M., Domijan A.M., Vrcek I.V., Letofsky-Papst I., Sikic S., Balen B. Phytotoxic effects of silver nanoparticles in tobacco plants. Env. Sci. Pollut. Res. Int. 2018;25:5590–5602. doi: 10.1007/s11356-017-0928-8. PubMed DOI

Ma X., Yan J. Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr. Opin. Environ. Sci. Health. 2018;6:16–20. doi: 10.1016/j.coesh.2018.07.008. DOI

Taiz L., Zeiger E., Møller I.M., Murphy A. Fundamentals of Plant Physiology. Oxford University Press; Oxford, UK: 2018.

Noori A., Ngo A., Gutierrez P., Theberge S., White J.C. Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum) J. Nanoparticle Res. 2020;22:131. doi: 10.1007/s11051-020-04866-y. DOI

Servin A.D., Castillo-Michel H., Hernandez-Viezcas J.A., Diaz B.C., Peralta-Videa J.R., Gardea-Torresdey J.L. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 2012;46:7637–7643. doi: 10.1021/es300955b. PubMed DOI

Servin A., Elmer W., Mukherjee A., la Torre-Roche D., Hamdi H., White J.C., Bindraban P., Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanoparticle Res. 2015;17:92. doi: 10.1007/s11051-015-2907-7. DOI

Saien J., Hasani R. Hydrodynamics and mass transfer characteristics of circulating single drops with effect of different size nanoparticles. Separation and Purification Technology. 2017;175:298–304. doi: 10.1016/j.seppur.2016.11.043. DOI

Moghaddasi S., Fotovat A., Khoshgoftarmanesh A.H., Karimzadeh F., Khazaei H.R., Khorassani R. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 2017;144:543–551. doi: 10.1016/j.ecoenv.2017.06.074. PubMed DOI

Peng C., Tong H., Shen C., Sun L., Yuan P., He M., Shi J. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Sci. Total Environ. 2020;713:136662. doi: 10.1016/j.scitotenv.2020.136662. PubMed DOI

Gubbins E.J., Batty L.C., Lead J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 2011;159:1551–1559. doi: 10.1016/j.envpol.2011.03.002. PubMed DOI

Arruda S.C.C., Silva A.L.D., Galazzi R.M., Azevedo R.A., Arruda M.A.Z. Nanoparticles applied to plant science: A review. Talanta. 2015;131:693–705. doi: 10.1016/j.talanta.2014.08.050. PubMed DOI

Mahakham W., Sarmah A.K., Maensiri S., Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017;7:8263. doi: 10.1038/s41598-017-08669-5. PubMed DOI PMC

Abbasi Khalaki M., Moameri M., Asgari Lajayer B., Astatkie T. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul. 2020;93:13–28. doi: 10.1007/s10725-020-00670-9. DOI

Köhl J., van der Wolf J. Alternaria brassicicola and Xanthomonas campestris pv. campestris in organic seed production of Brassicae: Epidemiology and seed infection. Wageningen: Plant Research International 2005, Note 363, 1-28. [(accessed on 30 July 2022)]. Available online: http://edepot.wur.nl/17130.

Deshmukh R.K., Nguyen H.T., Belanger R.R. Editorial: Aquaporins: Dynamic Role and Regulation. Front. Plant Sci. 2017;8:1420. doi: 10.3389/fpls.2017.01420. PubMed DOI PMC

Kumawat S., Khatri P., Ahmed A., Vats S., Kumar V., Jaswal R., Wang Y., Xu P., Mandlik R., Shivaraj S.M., et al. Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria) J. Hazard Mater. 2021;409:124598. doi: 10.1016/j.jhazmat.2020.124598. PubMed DOI

Roberts S.J., Brough J., Hunter P.J. Modelling the spread of Xanthomonas campestris pv. campestris in module-raised brassica transplants. Plant Pathol. 2006;56:391–401. doi: 10.1111/j.1365-3059.2006.01555.x. DOI

Jisha K.C., Vijayakumari K., Puthur J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2012;35:1381–1396. doi: 10.1007/s11738-012-1186-5. DOI

Paparella S., Araujo S.S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015;34:1281–1293. doi: 10.1007/s00299-015-1784-y. PubMed DOI

Pečenka J., Bytešníková Z., Kiss T., Peňázová E., Baránek M., Eichmeier A., Tekielska D., Richtera L., Pokluda R., Adam V. Silver nanoparticles eliminate Xanthomonas campestris pv. campestris in cabbage seeds more efficiently than hot water treatment. Mater. Today Commun. 2021;27:102284. doi: 10.1016/j.mtcomm.2021.102284. DOI

Singh A., Singh N.á., Afzal S., Singh T., Hussain I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 2018;53:185–201. doi: 10.1007/s10853-017-1544-1. DOI

Sarkar R.D., Deka J., Kalita M.C. Plant extract mediated green synthesis of selenium nanoparticle and its antimicrobial activity: A brief review. Innov. Microbiol. Biotechnol. 2021;2:103–110.

Ingle A.P., Duran N., Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 2014;98:1001–1009. doi: 10.1007/s00253-013-5422-8. PubMed DOI

Ma Z., Garrido-Maestu A., Jeong K.C. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017;176:257–265. doi: 10.1016/j.carbpol.2017.08.082. PubMed DOI

Ahuja R., Sidhu A., Bala A. Synthesis and evaluation of iron(ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur. J. Plant Pathol. 2019;155:163–171. doi: 10.1007/s10658-019-01758-3. DOI

Kumar G.D., Raja K., Natarajan N., Govindaraju K., Subramanian K.S. Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.) Mater. Chem. Phys. 2020;242:122492. doi: 10.1016/j.matchemphys.2019.122492. DOI

Sathiyabama M., Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. Int. J. Biol. Macromol. 2020;153:297–304. doi: 10.1016/j.ijbiomac.2020.03.001. PubMed DOI

Choudhary R.C., Kumaraswamy R.V., Kumari S., Sharma S.S., Pal A., Raliya R., Biswas P., Saharan V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int. J. Biol. Macromol. 2019;127:126–135. doi: 10.1016/j.ijbiomac.2018.12.274. PubMed DOI

Cadena M.B., Preston G.M., Van der Hoorn R.A.L., Flanagan N.A., Townley H.E., Thompson I.P. Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Ind. Crops Prod. 2018;124:755–764. doi: 10.1016/j.indcrop.2018.08.043. DOI

Shah V., Belozerova I. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds. Water Air Soil Pollut. 2008;197:143–148. doi: 10.1007/s11270-008-9797-6. DOI

Savvides A., Ali S., Tester M., Fotopoulos V. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? Trends Plant Sci. 2016;21:329–340. doi: 10.1016/j.tplants.2015.11.003. PubMed DOI

Van Nguyen D., Nguyen H.M., Le N.T., Nguyen K.H., Nguyen H.T., Le H.M., Nguyen A.T., Dinh N.T.T., Hoang S.A., Van Ha C. Copper Nanoparticle Application Enhances Plant Growth and Grain Yield in Maize Under Drought Stress Conditions. J. Plant Growth Regul. 2021;41:364–375. doi: 10.1007/s00344-021-10301-w. DOI

Rai-Kalal P., Tomar R.S., Jajoo A. H2O2 signaling regulates seed germination in ZnO nanoprimed wheat (Triticum aestivum L.) seeds for improving plant performance under drought stress. Environ. Exp. Bot. 2021;189:104561. doi: 10.1016/j.envexpbot.2021.104561. DOI

Rai-Kalal P., Tomar R.S., Jajoo A. Seed nanopriming by silicon oxide improves drought stress alleviation potential in wheat plants. Funct. Plant Biol. 2021;48:905–915. doi: 10.1071/FP21079. PubMed DOI

Kasote D.M., Lee J.H.J., Jayaprakasha G.K., Patil B.S. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense-Linked Hormones in Watermelon Seedlings. ACS Sustain. Chem. Eng. 2019;7:5142–5151. doi: 10.1021/acssuschemeng.8b06013. DOI

Vanti G.L., Nargund V.B., Vanarchi R., Kurjogi M., Mulla S.I., Tubaki S., Patil R.R. Synthesis ofGossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl. Organomet. Chem. 2019;33:e4630. doi: 10.1002/aoc.4630. DOI

Ye Y., Cota-Ruiz K., Hernández-Viezcas J.A., Valdés C., Medina-Velo I.A., Turley R.S., Peralta-Videa J.R., Gardea-Torresdey J.L. Manganese Nanoparticles Control Salinity-Modulated Molecular Responses in Capsicum annuum L. through Priming: A Sustainable Approach for Agriculture. ACS Sustain. Chem. Eng. 2020;8:1427–1436. doi: 10.1021/acssuschemeng.9b05615. DOI

Maswada H.F., Djanaguiraman M., Prasad P.V.V. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J. Agron. Crop Sci. 2018;204:577–587. doi: 10.1111/jac.12280. DOI

Abdel Latef A.A.H., Abu Alhmad M.F., Abdelfattah K.E. The Possible Roles of Priming with ZnO Nanoparticles in Mitigation of Salinity Stress in Lupine (Lupinus termis) Plants. J. Plant Growth Regul. 2016;36:60–70. doi: 10.1007/s00344-016-9618-x. DOI

El-Badri A.M., Batool M., Wang C., Hashem A.M., Tabl K.M., Nishawy E., Kuai J., Zhou G., Wang B. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol. Env. Saf. 2021;225:112695. doi: 10.1016/j.ecoenv.2021.112695. PubMed DOI

Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia Ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI

Hussain A., Rizwan M., Ali Q., Ali S. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Env. Sci. Pollut. Res. Int. 2019;26:7579–7588. doi: 10.1007/s11356-019-04210-5. PubMed DOI

Yasmeen F., Raja N.I., Razzaq A., Komatsu S. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim. Biophys. Acta Proteins Proteom. 2017;1865:28–42. doi: 10.1016/j.bbapap.2016.10.001. PubMed DOI

Wojtyla L., Lechowska K., Kubala S., Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front. Plant Sci. 2016;7:66. doi: 10.3389/fpls.2016.00066. PubMed DOI PMC

Guha T., Ravikumar K.V.G., Mukherjee A., Mukherjee A., Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.) Plant Physiol. Biochem. 2018;127:403–413. doi: 10.1016/j.plaphy.2018.04.014. PubMed DOI

Chandrasekaran U., Luo X., Wang Q., Shu K. Are There Unidentified Factors Involved in the Germination of Nanoprimed Seeds? Front. Plant Sci. 2020;11:832. doi: 10.3389/fpls.2020.00832. PubMed DOI PMC

Acharya P., Jayaprakasha G.K., Crosby K.M., Jifon J.L., Patil B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 2020;10:5037. doi: 10.1038/s41598-020-61696-7. PubMed DOI PMC

Younis M.E., Abdel-Aziz H.M.M., Heikal Y.M. Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. South Afr. J. Bot. 2019;125:393–401. doi: 10.1016/j.sajb.2019.08.018. DOI

Vijai Anand K., Anugraga A.R., Kannan M., Singaravelu G., Govindaraju K. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.) Mater. Lett. 2020;271:127792. doi: 10.1016/j.matlet.2020.127792. DOI

Sarkar N., Sharma R.S., Kaushik M. Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. Env. Sci. Pollut. Res. Int. 2021;28:13221–13228. doi: 10.1007/s11356-020-11493-6. PubMed DOI

Pradhan S., Patra P., Mitra S., Dey K.K., Jain S., Sarkar S., Roy S., Palit P., Goswami A. Manganese nanoparticles: Impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 2014;62:8777–8785. doi: 10.1021/jf502716c. PubMed DOI

Rahman M.S., Chakraborty A., Mazumdar S., Nandi N.C., Bhuiyan M.N.I., Alauddin S.M., Khan I.A., Hossain M.J. Effects of poly(vinylpyrrolidone) protected platinum nanoparticles on seed germination and growth performance of Pisum sativum. Nano-Struct. Nano-Objects. 2020;21:100408. doi: 10.1016/j.nanoso.2019.100408. DOI

Afsheen S., Naseer H., Iqbal T., Abrar M., Bashir A., Ijaz M. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Mater. Chem. Phys. 2020;252:123216. doi: 10.1016/j.matchemphys.2020.123216. DOI

Afzal S., Sharma D., Singh N.K. Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.) Env. Sci. Pollut. Res. Int. 2021;28:40275–40287. doi: 10.1007/s11356-020-12056-5. PubMed DOI

Sundaria N., Singh M., Upreti P., Chauhan R.P., Jaiswal J.P., Kumar A. Seed Priming with Iron Oxide Nanoparticles Triggers Iron Acquisition and Biofortification in Wheat (Triticum aestivum L.) Grains. J. Plant Growth Regul. 2018;38:122–131. doi: 10.1007/s00344-018-9818-7. DOI

Najafi Disfani M., Mikhak A., Kassaee M.Z., Maghari A. Effects of nano Fe/SiO2fertilizers on germination and growth of barley and maize. Arch. Agron. Soil Sci. 2016;63:817–826. doi: 10.1080/03650340.2016.1239016. DOI

Awasthi A., Bansal S., Jangir L.K., Awasthi G., Awasthi K.K., Awasthi K. Effect of ZnO Nanoparticles on Germination of Triticum aestivum Seeds. Macromol. Symp. 2017;376:1700043. doi: 10.1002/masy.201700043. DOI

Xiang L., Zhao H.M., Li Y.W., Huang X.P., Wu X.L., Zhai T., Yuan Y., Cai Q.Y., Mo C.H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Env. Sci. Pollut. Res. Int. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI

Pelegrino M.T., Kohatsu M.Y., Seabra A.B., Monteiro L.R., Gomes D.G., Oliveira H.C., Rolim W.R., de Jesus T.A., Batista B.L., Lange C.N. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Env. Monit. Assess. 2020;192:232. doi: 10.1007/s10661-020-8188-3. PubMed DOI

Afrayeem S.M., Chaurasia A.K. Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.) J. Pharmacogn. Phytochem. 2017;6:1564–1566.

Solgi M. Evaluation of plant-mediated Silver nanoparticles synthesis and its application in postharvest Physiology of cut Flowers. Physiol. Mol. Biol. Plants. 2014;20:279–285. doi: 10.1007/s12298-014-0237-3. PubMed DOI PMC

Gorczyca A., Pociecha E., Kasprowicz M., Niemiec M. Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur. J. Plant Pathol. 2015;142:251–261. doi: 10.1007/s10658-015-0608-9. DOI

Wu X., Hu J., Wu F., Zhang X., Wang B., Yang Y., Shen G., Liu J., Tao S., Wang X. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard Mater. 2021;405:124047. doi: 10.1016/j.jhazmat.2020.124047. PubMed DOI

Singh A., Singh N.B., Hussain I., Singh H., Singh S.C. Plant-nanoparticle interaction: An approach to improve agricultural practices and plant productivity. Int. J. Pharm. Sci. Invent. 2015;4:25–40.

Olchowik J., Bzdyk R., Studnicki M., Bederska-Błaszczyk M., Urban A., Aleksandrowicz-Trzcińska M. The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment. Forests. 2017;8:310. doi: 10.3390/f8090310. DOI

Moussa S.H., Tayel A.A., Alsohim A.S., Abdallah R.R. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J. Food Sci. 2013;78:M1589–M1594. doi: 10.1111/1750-3841.12247. PubMed DOI

Chu H., Kim H.-J., Su Kim J., Kim M.-S., Yoon B.-D., Park H.-J., Kim C.Y. A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. Radiat. Phys. Chem. 2012;81:180–184. doi: 10.1016/j.radphyschem.2011.10.004. DOI

Ocsoy I., Paret M.L., Ocsoy M.A., Kunwar S., Chen T., You M., Tan W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. Am. Chem. Soc. 2013;7:8972–8980. doi: 10.1021/nn4034794. PubMed DOI PMC

Swingle W.T. A List of the Kansas Species of Peronosporaceae. Trans. Annu. Meet. Kans. Acad. Sci. 1887;11:63. doi: 10.2307/3623671. DOI

Aziz A., Trotel-Aziz P., Dhuicq L., Jeandet P., Couderchet M., Vernet G. Chitosan Oligomers and Copper Sulfate Induce Grapevine Defense Reactions and Resistance to Gray Mold and Downy Mildew. Phytopathology. 2006;96:1188–1194. doi: 10.1094/PHYTO-96-1188. PubMed DOI

Egger E. Prevention is essential in the fight against peronospora. Inf. Agrar. 2009;65:39–52.

Jedlička J., Novotná B., Valšíková M. Evaluation of influence of the locality, the vintage year, wine variety and fermentation process on volume of cooper and lead in wine. Potravinarstvo. 2014;8:290–295. doi: 10.5219/403. DOI

Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 2009;29:69–78. doi: 10.1002/jat.1385. PubMed DOI

Ponmurugan P., Manjukarunambika K., Elango V., Gnanamangai B.M. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J. Exp. Nanosci. 2016;11:1019–1031. doi: 10.1080/17458080.2016.1184766. DOI

Giannousi K., Avramidis I., Dendrinou-Samara C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013;3:21743–21752. doi: 10.1039/c3ra42118j. DOI

Sathiyabama M., Manikandan A. Application of Copper-Chitosan Nanoparticles Stimulate Growth and Induce Resistance in Finger Millet (Eleusine coracana Gaertn.) Plants against Blast Disease. J. Agric. Food Chem. 2018;66:1784–1790. doi: 10.1021/acs.jafc.7b05921. PubMed DOI

He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI

Sardella D., Gatt R., Valdramidis V.P. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res. Int. 2017;101:274–279. doi: 10.1016/j.foodres.2017.08.019. PubMed DOI

Wani A.H., Shah M.A. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J. Appl. Pharm. Sci. 2012;2:40–44.

Graham J.H., Johnson E.G., Myers M.E., Young M., Rajasekaran P., Das S., Santra S. Potential of Nano-Formulated Zinc Oxide for Control of Citrus Canker on Grapefruit Trees. Plant Dis. 2016;100:2442–2447. doi: 10.1094/PDIS-05-16-0598-RE. PubMed DOI

Luksiene Z., Rasiukeviciute N., Zudyte B., Uselis N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J. Photochem. Photobiol. B. 2020;203:111656. doi: 10.1016/j.jphotobiol.2019.111656. PubMed DOI

Xin Q., Shah H., Nawaz A., Xie W., Akram M.Z., Batool A., Tian L., Jan S.U., Boddula R., Guo B., et al. Antibacterial Carbon-Based Nanomaterials. Adv. Mater. 2019;31:e1804838. doi: 10.1002/adma.201804838. PubMed DOI

Wang X., Liu X., Han H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf B Biointerfaces. 2013;103:136–142. doi: 10.1016/j.colsurfb.2012.09.044. PubMed DOI

Chen J., Wang X., Han H. A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanoparticle Res. 2013;15:1658. doi: 10.1007/s11051-013-1658-6. DOI

Wang X., Liu X., Chen J., Han H., Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014;68:798–806. doi: 10.1016/j.carbon.2013.11.072. DOI

Siddiqui Z.A., Parveen A., Ahmad L., Hashem A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci. Hortic. 2019;249:374–382. doi: 10.1016/j.scienta.2019.01.054. DOI

Deshpande A.S., Khomane R.B., Vaidya B.K., Joshi R.M., Harle A.S., Kulkarni B.D. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion. Nanoscale Res. Lett. 2008;3:221–229. doi: 10.1007/s11671-008-9140-6. DOI

Choudhury S.R., Ghosh M., Mandal A., Chakravorty D., Pal M., Pradhan S., Goswami A. Surface-modified sulfur nanoparticles: An effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 2011;90:733–743. doi: 10.1007/s00253-011-3142-5. PubMed DOI

Rao K.J., Paria S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv. 2013;3:10471–10478. doi: 10.1039/c3ra40500a. DOI

Imada K., Sakai S., Kajihara H., Tanaka S., Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 2016;65:551–560. doi: 10.1111/ppa.12443. DOI

Shenashen M., Derbalah A., Hamza A., Mohamed A., El Safty S. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Manag. Sci. 2017;73:1121–1126. doi: 10.1002/ps.4420. PubMed DOI

Xu C., Cao L., Zhao P., Zhou Z., Cao C., Li F., Huang Q. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J. 2018;348:244–254. doi: 10.1016/j.cej.2018.05.008. DOI

Xiang Y., Zhang G., Chen C., Liu B., Cai D., Wu Z. Fabrication of a pH-Responsively Controlled-Release Pesticide Using an Attapulgite-Based Hydrogel. ACS Sustain. Chem. Eng. 2017;6:1192–1201. doi: 10.1021/acssuschemeng.7b03469. DOI

Campos E.V.R., de Oliveira J.L., Fraceto L.F., Singh B. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 2014;35:47–66. doi: 10.1007/s13593-014-0263-0. DOI

Yusoff S.N.M., Kamari A., Aljafree N.F.A. A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 2016;13:2977–2994. doi: 10.1007/s13762-016-1096-y. DOI

Xiang Y., Zhang G., Chi Y., Cai D., Wu Z. Fabrication of a controllable nanopesticide system with magnetic collectability. Chem. Eng. J. 2017;328:320–330. doi: 10.1016/j.cej.2017.07.046. DOI

Kumar S., Bhanjana G., Sharma A., Sidhu M.C., Dilbaghi N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 2014;101:1061–1067. doi: 10.1016/j.carbpol.2013.10.025. PubMed DOI

Atta S., Bera M., Chattopadhyay T., Paul A., Ikbal M., Maiti M.K., Singh N.D.P. Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: For controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Adv. 2015;5:86990–86996. doi: 10.1039/C5RA17121K. DOI

Cao L., Zhang H., Cao C., Zhang J., Li F., Huang Q. Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. Nanomaterials. 2016;6:216. doi: 10.3390/nano6070126. PubMed DOI PMC

Zhao P., Cao L., Ma D., Zhou Z., Huang Q., Pan C. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale. 2018;10:1798–1806. doi: 10.1039/C7NR08107C. PubMed DOI

Yu M., Sun C., Xue Y., Liu C., Qiu D., Cui B., Zhang Y., Cui H., Zeng Z. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention. RSC Adv. 2019;9:27096–27104. doi: 10.1039/C9RA05843E. PubMed DOI PMC

Rossi L., Fedenia L.N., Sharifan H., Ma X., Lombardini L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019;135:160–166. doi: 10.1016/j.plaphy.2018.12.005. PubMed DOI

Raliya R., Tarafdar J.C. ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.) Agric. Res. 2013;2:48–57. doi: 10.1007/s40003-012-0049-z. DOI

Marzouk N.M., Abd-Alrahman H.A., El-Tanahy A.M.M., Mahmoud S.H. Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bull. Natl. Res. Cent. 2019;43:84. doi: 10.1186/s42269-019-0127-5. DOI

Raliya R., Nair R., Chavalmane S., Wang W.N., Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7:1584–1594. doi: 10.1039/C5MT00168D. PubMed DOI

Pallavi, Mehta C.M., Srivastava R., Arora S., Sharma A.K. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6:254. doi: 10.1007/s13205-016-0567-7. PubMed DOI PMC

Abdel-Aziz H.M.M., Hasaneen M.N.A., Omer A.M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res. 2016;14:e0902. doi: 10.5424/sjar/2016141-8205. DOI

Lopes T., Cruz C., Cardoso P., Pinto R., Marques P., Figueira E. A Multifactorial Approach to Untangle Graphene Oxide (GO) Nanosheets Effects on Plants: Plant Growth-Promoting Bacteria Inoculation, Bacterial Survival, and Drought. Nanomaterials. 2021;11:771. doi: 10.3390/nano11030771. PubMed DOI PMC

Rui M., Ma C., Hao Y., Guo J., Rui Y., Tang X., Zhao Q., Fan X., Zhang Z., Hou T., et al. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea) Front Plant Sci. 2016;7:815. doi: 10.3389/fpls.2016.00815. PubMed DOI PMC

Sharifi R. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays) Environ. Exp. Biol. 2016;14:151–156. doi: 10.22364/eeb.14.21. DOI

Janmohammadi M., Amanzadeh T., Sabaghnia N., Dashti S. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov. 2016;107:265–276. doi: 10.14720/aas.2016.107.2.01. DOI

Sharifan H., Wang X., Guo B., Ma X. Investigation on the Modification of Physicochemical Properties of Cerium Oxide Nanoparticles through Adsorption of Cd and As(III)/As(V) ACS Sustain. Chem. Eng. 2018;6:13454–13461. doi: 10.1021/acssuschemeng.8b03355. DOI

Rizwan M., Ali S., ur Rehman M.Z., Malik S., Adrees M., Qayyum M.F., Alamri S.A., Alyemeni M.N., Ahmad P. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa) Acta Physiol. Plant. 2019;41:35. doi: 10.1007/s11738-019-2828-7. DOI

Bao-Shan L., Shao-Qi D., Chun-Hui L., Li-Jun F., Shu-Chun Q., Min Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res. 2004;15:138–140. doi: 10.1007/BF02856749. DOI

Ashkavand P., Tabari M., Aliyari F., Zarafshar M., Striker G.G., Shukla P.K., Sattarian A., Misra P. Nanosilicon Particle Effects on Physiology and Growth of Woody Plants. In: Faisal M., Saquib Q., Alatar A.A., Al-Khedhairy A.A., editors. Phytotoxicity of Nanoparticles. Springer International Publishing; Cham, Switzerland: 2018. pp. 285–299.

Qi Y., Lian K., Wu Q., Li Y., Danzy M., Menard R., Chin K.L., Collins D., Oliveria F., Klepzig K. Potentials of nanotechnology application in forest protection; Proceedings of the TAPPI International Conference on Nanotechnology for Renewable Materials; Washington, DC, USA. 6–8 June 2011; Peachtree Corners, Georgia: TAPPI Press; 2013. pp. 271–278.

Glick B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;2012:963401. doi: 10.6064/2012/963401. PubMed DOI PMC

Raja N. Biopesticides and Biofertilizers: Ecofriendly Sources for Sustainable Agriculture. J. Fertil. Pestic. 2013;4:e112. doi: 10.4172/2155-6202.1000e112. DOI

Mahil E.I.T., Kumar B.N.A. Foliar application of nanofertilizers in agricultural crops—A review. J. Farm. Sci. 2019;32:239–249.

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Chlpík J., Juriga M. Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC

Zhou P., Adeel M., Shakoor N., Guo M., Hao Y., Azeem I., Li M., Liu M., Rui Y. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials. 2020;11:26. doi: 10.3390/nano11010026. PubMed DOI PMC

Slomberg D.L., Schoenfisch M.H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 2012;46:10247–10254. doi: 10.1021/es300949f. PubMed DOI

Jatav G.K., De N. Application of nano-technology in soil-plant system. Asian J. Soil Sci. 2013;8:176–184.

Corradini E., de Moura M.R., Mattoso L.H.C. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 2010;4:509–515. doi: 10.3144/expresspolymlett.2010.64. DOI

Preetha P.S., Balakrishnan N. A Review of Nano Fertilizers and Their Use and Functions in Soil. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:3117–3133. doi: 10.20546/ijcmas.2017.612.364. DOI

Lee W.-M., An Y.-J., Yoon H., Kweon H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008;27:1915–1921. doi: 10.1897/07-481.1. PubMed DOI

Nowack B., Krug H.F., Height M. 120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol. 2011;45:1177–1183. doi: 10.1021/es103316q. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...