Interaction of the Nanoparticles and Plants in Selective Growth Stages-Usual Effects and Resulting Impact on Usage Perspectives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
QK22010031
Ministry of Agriculture of the Czech Republic
IGA-ZF/2021-SI200
Mendel University in Brno
PubMed
36145807
PubMed Central
PMC9502563
DOI
10.3390/plants11182405
PII: plants11182405
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial effect, growth promotion, nanoparticles, nanopriming, seed germination, stress tolerance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanotechnologies have received tremendous attention since their discovery. The current studies show a high application potential of nanoparticles for plant treatments, where the general properties of nanoparticles such as their lower concentrations for an appropriate effects, the gradual release of nanoparticle-based nutrients or their antimicrobial effect are especially useful. The presented review, after the general introduction, analyzes the mechanisms that are described so far in the uptake and movement of nanoparticles in plants. The following part evaluates the available literature on the application of nanoparticles in the selective growth stage, namely, it compares the observed effect that they have when they are applied to seeds (nanopriming), to seedlings or adult plants. Based on the research that has been carried out, it is evident that the most common beneficial effects of nanopriming are the improved parameters for seed germination, the reduced contamination by plant pathogens and the higher stress tolerance that they generate. In the case of plant treatments, the most common applications are for the purpose of generating protection against plant pathogens, but better growth and better tolerance to stresses are also frequently observed. Hypotheses explaining these observed effects were also mapped, where, e.g., the influence that they have on photosynthesis parameters is described as a frequent growth-improving factor. From the consortium of the used nanoparticles, those that were most frequently applied included the principal components that were derived from zinc, iron, copper and silver. This observation implies that the beneficial effect that nanoparticles have is not necessarily based on the nutritional supply that comes from the used metal ions, as they can induce these beneficial physiological changes in the treated cells by other means. Finally, a critical evaluation of the strengths and weaknesses of the wider use of nanoparticles in practice is presented.
Zobrazit více v PubMed
Zítka O., Brně V.U.T.V., Univerzita M. Moderní Nanotechnologie na Počátku 21. Století: Kolekce Učebních Textů Projektu OPVK NANOTEAM. Vysoké Učení Technické v Brně; Brno, Czechia: 2013.
Hasan S. A Review on Nanoparticles: Their Synthesis and Types. Res. J. Recent. Sci. 2015;4:1–3.
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Elmer W., White J.C. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 2018;56:111–133. doi: 10.1146/annurev-phyto-080417-050108. PubMed DOI
Fernando S.S.N., Gunasekara T., Holton J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis. 2018;8:2–11. doi: 10.4038/sljid.v8i1.8167. DOI
Dizaj S.M., Mennati A., Jafari S., Khezri K., Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015;5:19–23. doi: 10.5681/apb.2015.003. PubMed DOI PMC
Ealias A.M., Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017;263:032019. doi: 10.1088/1757-899X/263/3/032019. DOI
Sanzari I., Leone A., Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front Bioeng Biotechnol. 2019;7:120. doi: 10.3389/fbioe.2019.00120. PubMed DOI PMC
Machado S., Pacheco J.G., Nouws H.P., Albergaria J.T., Delerue-Matos C. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total Env. 2015;533:76–81. doi: 10.1016/j.scitotenv.2015.06.091. PubMed DOI
Yu M., Yao J., Liang J., Zeng Z., Cui B., Zhao X., Sun C., Wang Y., Liu G., Cui H. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 2017;7:11271–11280. doi: 10.1039/C6RA27345A. DOI
Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC
Jurkow R., Pokluda R., Sekara A., Kalisz A. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biol. 2020;20:290. doi: 10.1186/s12870-020-02490-5. PubMed DOI PMC
Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Env. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Fatima F., Hashim A., Anees S. Efficacy of nanoparticles as nanofertilizer production: A review. Env. Sci. Pollut. Res. Int. 2021;28:1292–1303. doi: 10.1007/s11356-020-11218-9. PubMed DOI
Jakhar A.M., Aziz I., Kaleri A.R., Hasnain M., Haider G., Ma J., Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact. 2022;27:100411. doi: 10.1016/j.impact.2022.100411. PubMed DOI
Duhan J.S., Kumar R., Kumar N., Kaur P., Nehra K., Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017;15:11–23. doi: 10.1016/j.btre.2017.03.002. PubMed DOI PMC
Hong J., Wang C., Wagner D.C., Gardea-Torresdey J.L., He F., Rico C.M. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano. 2021;8:1196–1210. doi: 10.1039/D0EN01129K. DOI
Azizi-Lalabadi M., Ehsani A., Divband B., Alizadeh-Sani M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 2019;9:17439. doi: 10.1038/s41598-019-54025-0. PubMed DOI PMC
Usman M.S., El Zowalaty M.E., Shameli K., Zainuddin N., Salama M., Ibrahim N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013;8:4467–4479. doi: 10.2147/IJN.S50837. PubMed DOI PMC
Aliasghari A., Khorasgani M.R., Vaezifar S., Rahimi F., Younesi H., Khoroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: An in vitro study. Iran. J. Microbiol. 2016;8:93–100. PubMed PMC
Kalwar K., Shan D. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism—A mini review. Micro Nano Lett. 2018;13:277–280. doi: 10.1049/mnl.2017.0648. DOI
Li Y., Leung P., Yao L., Song Q.W., Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 2006;62:58–63. doi: 10.1016/j.jhin.2005.04.015. PubMed DOI
Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI
Burman U., Saini M., Kumar P. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 2013;95:605–612. doi: 10.1080/02772248.2013.803796. DOI
Novotný D., Baránek M., Eichmeier A., Salava J., Peňázová E., Pečenka J., Koudela M. Prostředky Diagnostiky A Ochrany Proti Vybraným Druhům Škodlivých Mikroorganismů Zelí. Výzkumný Ústav Rostlinné Výroby; Praha, Czech Republic: 2019.
Ameh T., Sayes C.M. The potential exposure and hazards of copper nanoparticles: A review. Env. Toxicol. Pharm. 2019;71:103220. doi: 10.1016/j.etap.2019.103220. PubMed DOI
Martins C.H., Carvalho T.C., Souza M.G., Ravagnani C., Peitl O., Zanotto E.D., Panzeri H., Casemiro L.A. Assessment of antimicrobial effect of Biosilicate(R) against anaerobic, microaerophilic and facultative anaerobic microorganisms. J. Mater. Sci. Mater. Med. 2011;22:1439–1446. doi: 10.1007/s10856-011-4330-7. PubMed DOI
Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC
Parra A., Toro M., Jacob R., Navarrete P., Troncoso M., Figueroa G., Reyes-Jara A. Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. Braz. J. Microbiol. 2018;49((Suppl 1)):113–118. doi: 10.1016/j.bjm.2018.06.008. PubMed DOI PMC
Marthandan V., Geetha R., Kumutha K., Renganathan V.G., Karthikeyan A., Ramalingam J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol Sci. 2020:8258. doi: 10.3390/ijms21218258. PubMed DOI PMC
Do Espirito Santo Pereira A., Caixeta Oliveira H., Fernandes Fraceto L., Santaella C. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials. 2021;11:267. doi: 10.3390/nano11020267. PubMed DOI PMC
Singh V.P., Singh S., Tripathi D.K., Prasad S.M., Chauhan D.K. Plant Responses to Nanomaterials. Springer; Berlin/Heidelberg, Germany: 2021.
Ma X., Geisler-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Env. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI
Dimkpa C.O., McLean J.E., Latta D.E., Manangón E., Britt D.W., Johnson W.P., Boyanov M.I., Anderson A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanoparticle Res. 2012;14:1125. doi: 10.1007/s11051-012-1125-9. DOI
Wang F., Liu X., Shi Z., Tong R., Adams C.A., Shi X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Chemosphere. 2016;147:88–97. doi: 10.1016/j.chemosphere.2015.12.076. PubMed DOI
Tripathi D.K., Tripathi A., Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., Upadhyay R.G., et al. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review. Front. Microbiol. 2017;8:07. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC
Hubbard J.D., Lui A., Landry M.P. Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Curr. Opin. Chem. Eng. 2020;30:135–143. doi: 10.1016/j.coche.2020.100659. DOI
Committee E.S., More S., Bampidis V., Benford D., Bragard C., Halldorsson T., Hernandez-Jerez A., Hougaard Bennekou S., Koutsoumanis K., Lambre C., et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021;19:e06768. doi: 10.2903/j.efsa.2021.6768. PubMed DOI PMC
Allan J., Belz S., Hoeveler A., Hugas M., Okuda H., Patri A., Rauscher H., Silva P., Slikker W., Sokull-Kluettgen B. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol. 2021;122:104885. doi: 10.1016/j.yrtph.2021.104885. PubMed DOI PMC
Duan H., Wang D., Li Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015;44:5778–5792. doi: 10.1039/C4CS00363B. PubMed DOI
Kharissova O.V., Dias H.V., Kharisov B.I., Perez B.O., Perez V.M. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–248. doi: 10.1016/j.tibtech.2013.01.003. PubMed DOI
Alavi M., Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov. Today. 2021;26:1953–1962. doi: 10.1016/j.drudis.2021.03.030. PubMed DOI
Avellan A., Yun J., Morais B.P., Clement E.T., Rodrigues S.M., Lowry G.V. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. Env. Sci. Technol. 2021;55:13417–13431. doi: 10.1021/acs.est.1c00178. PubMed DOI
Ha N., Seo E., Kim S., Lee S.J. Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Sci. Rep. 2021;11:11556. doi: 10.1038/s41598-021-91073-x. PubMed DOI PMC
Anjum S.A., Tanveer M., Ashraf U., Hussain S., Shahzad B., Khan I., Wang L. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Env. Sci. Pollut. Res. Int. 2016;23:17132–17141. doi: 10.1007/s11356-016-6894-8. PubMed DOI
Yeats T.H., Rose J.K. The formation and function of plant cuticles. Plant Physiol. 2013;163:5–20. doi: 10.1104/pp.113.222737. PubMed DOI PMC
Heredia-Guerrero J.A., Benitez J.J., Dominguez E., Bayer I.S., Cingolani R., Athanassiou A., Heredia A. Infrared and Raman spectroscopic features of plant cuticles: A review. Front. Plant Sci. 2014;5:305. doi: 10.3389/fpls.2014.00305. PubMed DOI PMC
Guzman-Delgado P., Graca J., Cabral V., Gil L., Fernandez V. The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example. Physiol. Plant. 2016;157:205–220. doi: 10.1111/ppl.12414. PubMed DOI
Lv G., Du C., Ma F., Shen Y., Zhou J. In situ detection of rice leaf cuticle responses to nitrogen supplies by depth-profiling Fourier transform photoacoustic spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020;228:117759. doi: 10.1016/j.saa.2019.117759. PubMed DOI
Li C., Wang P., Lombi E., Cheng M., Tang C., Howard D.L., Menzies N.W., Kopittke P.M. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. J. Exp. Bot. 2018;69:2717–2729. doi: 10.1093/jxb/ery085. PubMed DOI PMC
Wang P., Lombi E., Zhao F.J., Kopittke P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016;21:699–712. doi: 10.1016/j.tplants.2016.04.005. PubMed DOI
Zhu J., Li J., Shen Y., Liu S., Zeng N., Zhan X., White J.C., Gardea-Torresdey J., Xing B. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ. Sci. Nano. 2020;7:3901–3913. doi: 10.1039/D0EN00658K. DOI
Lin S., Reppert J., Hu Q., Hudson J.S., Reid M.L., Ratnikova T.A., Rao A.M., Luo H., Ke P.C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5:1128–1132. doi: 10.1002/smll.200801556. PubMed DOI
Uzu G., Sobanska S., Sarret G., Muñoz M., Dumat C. Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environ. Sci. Technol. Am. Chem. Soc. 2010;44:1036–1042. doi: 10.1021/es902190u. PubMed DOI
Eichert T., Goldbach H.E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces--further evidence for a stomatal pathway. Physiol. Plant. 2008;132:491–502. doi: 10.1111/j.1399-3054.2007.01023.x. PubMed DOI
Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008;134:151–160. doi: 10.1111/j.1399-3054.2008.01135.x. PubMed DOI
Kaiser H. Stomatal uptake of mineral particles from a sprayed suspension containing an organosilicone surfactant. J. Plant Nutr. Soil Sci. 2014;177:869–874. doi: 10.1002/jpln.201300607. DOI
Magniont C., Escadeillas G., Coutand M., Oms-Multon C. Use of plant aggregates in building ecomaterials. Eur. J. Environ. Civ. Eng. 2012;16:s17–s33. doi: 10.1080/19648189.2012.682452. DOI
Benzon H.R.L., Rubenecia M.R.U., Ultra J., Venecio U., Lee S.C. Nano-fertilizer affects the growth, development, and chemical properties of rice. Int. J. Agri. Agri. R. 2015;7:105–117.
Lawrence M., Fodde E., Paine K., Walker P. Hygrothermal Performance of an Experimental Hemp-Lime Building. Key Eng. Mater. 2012;517:413–421. doi: 10.4028/www.scientific.net/KEM.517.413. DOI
Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI
Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010;179:154–163. doi: 10.1016/j.plantsci.2010.04.012. DOI
Li C., Wang P., Van Der Ent A., Cheng M., Jiang H., Lund Read T., Lombi E., Tang C., De Jonge M.D., Menzies N.W. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Ann. Bot. 2019;123:57–68. doi: 10.1093/aob/mcy135. PubMed DOI PMC
Larue C., Laurette J., Herlin-Boime N., Khodja H., Fayard B., Flank A.M., Brisset F., Carriere M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Sci. Total Env. 2012;431:197–208. doi: 10.1016/j.scitotenv.2012.04.073. PubMed DOI
Zhao L., Peralta-Videa J.R., Ren M., Varela-Ramirez A., Li C., Hernandez-Viezcas J.A., Aguilera R.J., Gardea-Torresdey J.L. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem. Eng. J. 2012;184:1–8. doi: 10.1016/j.cej.2012.01.041. DOI
Deng Y.-Q., White J.C., Xing B.-S. Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. J. Zhejiang Univ. SCIENCE A. 2014;15:552–572. doi: 10.1631/jzus.A1400165. DOI
Sun D., Hussain H.I., Yi Z., Siegele R., Cresswell T., Kong L., Cahill D.M. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 2014;33:1389–1402. doi: 10.1007/s00299-014-1624-5. PubMed DOI
Wang Z., Xie X., Zhao J., Liu X., Feng W., White J.C., Xing B. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.) Env. Sci. Technol. 2012;46:4434–4441. doi: 10.1021/es204212z. PubMed DOI
Zhu Z.J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 2012;46:12391–12398. doi: 10.1021/es301977w. PubMed DOI
Pérez-de-Luque A. Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Front. Environ. Sci. 2017;5:12. doi: 10.3389/fenvs.2017.00012. DOI
Larue C., Veronesi G., Flank A.M., Surble S., Herlin-Boime N., Carriere M. Comparative uptake and impact of TiO(2) nanoparticles in wheat and rapeseed. J. Toxicol. Env. Health A. 2012;75:722–734. doi: 10.1080/15287394.2012.689800. PubMed DOI
Lv J., Zhang S., Luo L., Zhang J., Yang K., Christie P. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci. Nano. 2015;2:68–77. doi: 10.1039/C4EN00064A. DOI
Avellan A., Yun J., Zhang Y., Spielman-Sun E., Unrine J.M., Thieme J., Li J., Lombi E., Bland G., Lowry G.V. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano. 2019;13:5291–5305. doi: 10.1021/acsnano.8b09781. PubMed DOI
Cvjetko P., Zovko M., Stefanic P.P., Biba R., Tkalec M., Domijan A.M., Vrcek I.V., Letofsky-Papst I., Sikic S., Balen B. Phytotoxic effects of silver nanoparticles in tobacco plants. Env. Sci. Pollut. Res. Int. 2018;25:5590–5602. doi: 10.1007/s11356-017-0928-8. PubMed DOI
Ma X., Yan J. Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr. Opin. Environ. Sci. Health. 2018;6:16–20. doi: 10.1016/j.coesh.2018.07.008. DOI
Taiz L., Zeiger E., Møller I.M., Murphy A. Fundamentals of Plant Physiology. Oxford University Press; Oxford, UK: 2018.
Noori A., Ngo A., Gutierrez P., Theberge S., White J.C. Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum) J. Nanoparticle Res. 2020;22:131. doi: 10.1007/s11051-020-04866-y. DOI
Servin A.D., Castillo-Michel H., Hernandez-Viezcas J.A., Diaz B.C., Peralta-Videa J.R., Gardea-Torresdey J.L. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 2012;46:7637–7643. doi: 10.1021/es300955b. PubMed DOI
Servin A., Elmer W., Mukherjee A., la Torre-Roche D., Hamdi H., White J.C., Bindraban P., Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanoparticle Res. 2015;17:92. doi: 10.1007/s11051-015-2907-7. DOI
Saien J., Hasani R. Hydrodynamics and mass transfer characteristics of circulating single drops with effect of different size nanoparticles. Separation and Purification Technology. 2017;175:298–304. doi: 10.1016/j.seppur.2016.11.043. DOI
Moghaddasi S., Fotovat A., Khoshgoftarmanesh A.H., Karimzadeh F., Khazaei H.R., Khorassani R. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 2017;144:543–551. doi: 10.1016/j.ecoenv.2017.06.074. PubMed DOI
Peng C., Tong H., Shen C., Sun L., Yuan P., He M., Shi J. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Sci. Total Environ. 2020;713:136662. doi: 10.1016/j.scitotenv.2020.136662. PubMed DOI
Gubbins E.J., Batty L.C., Lead J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 2011;159:1551–1559. doi: 10.1016/j.envpol.2011.03.002. PubMed DOI
Arruda S.C.C., Silva A.L.D., Galazzi R.M., Azevedo R.A., Arruda M.A.Z. Nanoparticles applied to plant science: A review. Talanta. 2015;131:693–705. doi: 10.1016/j.talanta.2014.08.050. PubMed DOI
Mahakham W., Sarmah A.K., Maensiri S., Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017;7:8263. doi: 10.1038/s41598-017-08669-5. PubMed DOI PMC
Abbasi Khalaki M., Moameri M., Asgari Lajayer B., Astatkie T. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul. 2020;93:13–28. doi: 10.1007/s10725-020-00670-9. DOI
Köhl J., van der Wolf J. Alternaria brassicicola and Xanthomonas campestris pv. campestris in organic seed production of Brassicae: Epidemiology and seed infection. Wageningen: Plant Research International 2005, Note 363, 1-28. [(accessed on 30 July 2022)]. Available online: http://edepot.wur.nl/17130.
Deshmukh R.K., Nguyen H.T., Belanger R.R. Editorial: Aquaporins: Dynamic Role and Regulation. Front. Plant Sci. 2017;8:1420. doi: 10.3389/fpls.2017.01420. PubMed DOI PMC
Kumawat S., Khatri P., Ahmed A., Vats S., Kumar V., Jaswal R., Wang Y., Xu P., Mandlik R., Shivaraj S.M., et al. Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria) J. Hazard Mater. 2021;409:124598. doi: 10.1016/j.jhazmat.2020.124598. PubMed DOI
Roberts S.J., Brough J., Hunter P.J. Modelling the spread of Xanthomonas campestris pv. campestris in module-raised brassica transplants. Plant Pathol. 2006;56:391–401. doi: 10.1111/j.1365-3059.2006.01555.x. DOI
Jisha K.C., Vijayakumari K., Puthur J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2012;35:1381–1396. doi: 10.1007/s11738-012-1186-5. DOI
Paparella S., Araujo S.S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015;34:1281–1293. doi: 10.1007/s00299-015-1784-y. PubMed DOI
Pečenka J., Bytešníková Z., Kiss T., Peňázová E., Baránek M., Eichmeier A., Tekielska D., Richtera L., Pokluda R., Adam V. Silver nanoparticles eliminate Xanthomonas campestris pv. campestris in cabbage seeds more efficiently than hot water treatment. Mater. Today Commun. 2021;27:102284. doi: 10.1016/j.mtcomm.2021.102284. DOI
Singh A., Singh N.á., Afzal S., Singh T., Hussain I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 2018;53:185–201. doi: 10.1007/s10853-017-1544-1. DOI
Sarkar R.D., Deka J., Kalita M.C. Plant extract mediated green synthesis of selenium nanoparticle and its antimicrobial activity: A brief review. Innov. Microbiol. Biotechnol. 2021;2:103–110.
Ingle A.P., Duran N., Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 2014;98:1001–1009. doi: 10.1007/s00253-013-5422-8. PubMed DOI
Ma Z., Garrido-Maestu A., Jeong K.C. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017;176:257–265. doi: 10.1016/j.carbpol.2017.08.082. PubMed DOI
Ahuja R., Sidhu A., Bala A. Synthesis and evaluation of iron(ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur. J. Plant Pathol. 2019;155:163–171. doi: 10.1007/s10658-019-01758-3. DOI
Kumar G.D., Raja K., Natarajan N., Govindaraju K., Subramanian K.S. Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.) Mater. Chem. Phys. 2020;242:122492. doi: 10.1016/j.matchemphys.2019.122492. DOI
Sathiyabama M., Muthukumar S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. Int. J. Biol. Macromol. 2020;153:297–304. doi: 10.1016/j.ijbiomac.2020.03.001. PubMed DOI
Choudhary R.C., Kumaraswamy R.V., Kumari S., Sharma S.S., Pal A., Raliya R., Biswas P., Saharan V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int. J. Biol. Macromol. 2019;127:126–135. doi: 10.1016/j.ijbiomac.2018.12.274. PubMed DOI
Cadena M.B., Preston G.M., Van der Hoorn R.A.L., Flanagan N.A., Townley H.E., Thompson I.P. Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Ind. Crops Prod. 2018;124:755–764. doi: 10.1016/j.indcrop.2018.08.043. DOI
Shah V., Belozerova I. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds. Water Air Soil Pollut. 2008;197:143–148. doi: 10.1007/s11270-008-9797-6. DOI
Savvides A., Ali S., Tester M., Fotopoulos V. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? Trends Plant Sci. 2016;21:329–340. doi: 10.1016/j.tplants.2015.11.003. PubMed DOI
Van Nguyen D., Nguyen H.M., Le N.T., Nguyen K.H., Nguyen H.T., Le H.M., Nguyen A.T., Dinh N.T.T., Hoang S.A., Van Ha C. Copper Nanoparticle Application Enhances Plant Growth and Grain Yield in Maize Under Drought Stress Conditions. J. Plant Growth Regul. 2021;41:364–375. doi: 10.1007/s00344-021-10301-w. DOI
Rai-Kalal P., Tomar R.S., Jajoo A. H2O2 signaling regulates seed germination in ZnO nanoprimed wheat (Triticum aestivum L.) seeds for improving plant performance under drought stress. Environ. Exp. Bot. 2021;189:104561. doi: 10.1016/j.envexpbot.2021.104561. DOI
Rai-Kalal P., Tomar R.S., Jajoo A. Seed nanopriming by silicon oxide improves drought stress alleviation potential in wheat plants. Funct. Plant Biol. 2021;48:905–915. doi: 10.1071/FP21079. PubMed DOI
Kasote D.M., Lee J.H.J., Jayaprakasha G.K., Patil B.S. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense-Linked Hormones in Watermelon Seedlings. ACS Sustain. Chem. Eng. 2019;7:5142–5151. doi: 10.1021/acssuschemeng.8b06013. DOI
Vanti G.L., Nargund V.B., Vanarchi R., Kurjogi M., Mulla S.I., Tubaki S., Patil R.R. Synthesis ofGossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl. Organomet. Chem. 2019;33:e4630. doi: 10.1002/aoc.4630. DOI
Ye Y., Cota-Ruiz K., Hernández-Viezcas J.A., Valdés C., Medina-Velo I.A., Turley R.S., Peralta-Videa J.R., Gardea-Torresdey J.L. Manganese Nanoparticles Control Salinity-Modulated Molecular Responses in Capsicum annuum L. through Priming: A Sustainable Approach for Agriculture. ACS Sustain. Chem. Eng. 2020;8:1427–1436. doi: 10.1021/acssuschemeng.9b05615. DOI
Maswada H.F., Djanaguiraman M., Prasad P.V.V. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J. Agron. Crop Sci. 2018;204:577–587. doi: 10.1111/jac.12280. DOI
Abdel Latef A.A.H., Abu Alhmad M.F., Abdelfattah K.E. The Possible Roles of Priming with ZnO Nanoparticles in Mitigation of Salinity Stress in Lupine (Lupinus termis) Plants. J. Plant Growth Regul. 2016;36:60–70. doi: 10.1007/s00344-016-9618-x. DOI
El-Badri A.M., Batool M., Wang C., Hashem A.M., Tabl K.M., Nishawy E., Kuai J., Zhou G., Wang B. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol. Env. Saf. 2021;225:112695. doi: 10.1016/j.ecoenv.2021.112695. PubMed DOI
Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia Ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI
Hussain A., Rizwan M., Ali Q., Ali S. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Env. Sci. Pollut. Res. Int. 2019;26:7579–7588. doi: 10.1007/s11356-019-04210-5. PubMed DOI
Yasmeen F., Raja N.I., Razzaq A., Komatsu S. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim. Biophys. Acta Proteins Proteom. 2017;1865:28–42. doi: 10.1016/j.bbapap.2016.10.001. PubMed DOI
Wojtyla L., Lechowska K., Kubala S., Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front. Plant Sci. 2016;7:66. doi: 10.3389/fpls.2016.00066. PubMed DOI PMC
Guha T., Ravikumar K.V.G., Mukherjee A., Mukherjee A., Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.) Plant Physiol. Biochem. 2018;127:403–413. doi: 10.1016/j.plaphy.2018.04.014. PubMed DOI
Chandrasekaran U., Luo X., Wang Q., Shu K. Are There Unidentified Factors Involved in the Germination of Nanoprimed Seeds? Front. Plant Sci. 2020;11:832. doi: 10.3389/fpls.2020.00832. PubMed DOI PMC
Acharya P., Jayaprakasha G.K., Crosby K.M., Jifon J.L., Patil B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 2020;10:5037. doi: 10.1038/s41598-020-61696-7. PubMed DOI PMC
Younis M.E., Abdel-Aziz H.M.M., Heikal Y.M. Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. South Afr. J. Bot. 2019;125:393–401. doi: 10.1016/j.sajb.2019.08.018. DOI
Vijai Anand K., Anugraga A.R., Kannan M., Singaravelu G., Govindaraju K. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.) Mater. Lett. 2020;271:127792. doi: 10.1016/j.matlet.2020.127792. DOI
Sarkar N., Sharma R.S., Kaushik M. Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. Env. Sci. Pollut. Res. Int. 2021;28:13221–13228. doi: 10.1007/s11356-020-11493-6. PubMed DOI
Pradhan S., Patra P., Mitra S., Dey K.K., Jain S., Sarkar S., Roy S., Palit P., Goswami A. Manganese nanoparticles: Impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 2014;62:8777–8785. doi: 10.1021/jf502716c. PubMed DOI
Rahman M.S., Chakraborty A., Mazumdar S., Nandi N.C., Bhuiyan M.N.I., Alauddin S.M., Khan I.A., Hossain M.J. Effects of poly(vinylpyrrolidone) protected platinum nanoparticles on seed germination and growth performance of Pisum sativum. Nano-Struct. Nano-Objects. 2020;21:100408. doi: 10.1016/j.nanoso.2019.100408. DOI
Afsheen S., Naseer H., Iqbal T., Abrar M., Bashir A., Ijaz M. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Mater. Chem. Phys. 2020;252:123216. doi: 10.1016/j.matchemphys.2020.123216. DOI
Afzal S., Sharma D., Singh N.K. Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.) Env. Sci. Pollut. Res. Int. 2021;28:40275–40287. doi: 10.1007/s11356-020-12056-5. PubMed DOI
Sundaria N., Singh M., Upreti P., Chauhan R.P., Jaiswal J.P., Kumar A. Seed Priming with Iron Oxide Nanoparticles Triggers Iron Acquisition and Biofortification in Wheat (Triticum aestivum L.) Grains. J. Plant Growth Regul. 2018;38:122–131. doi: 10.1007/s00344-018-9818-7. DOI
Najafi Disfani M., Mikhak A., Kassaee M.Z., Maghari A. Effects of nano Fe/SiO2fertilizers on germination and growth of barley and maize. Arch. Agron. Soil Sci. 2016;63:817–826. doi: 10.1080/03650340.2016.1239016. DOI
Awasthi A., Bansal S., Jangir L.K., Awasthi G., Awasthi K.K., Awasthi K. Effect of ZnO Nanoparticles on Germination of Triticum aestivum Seeds. Macromol. Symp. 2017;376:1700043. doi: 10.1002/masy.201700043. DOI
Xiang L., Zhao H.M., Li Y.W., Huang X.P., Wu X.L., Zhai T., Yuan Y., Cai Q.Y., Mo C.H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Env. Sci. Pollut. Res. Int. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI
Pelegrino M.T., Kohatsu M.Y., Seabra A.B., Monteiro L.R., Gomes D.G., Oliveira H.C., Rolim W.R., de Jesus T.A., Batista B.L., Lange C.N. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Env. Monit. Assess. 2020;192:232. doi: 10.1007/s10661-020-8188-3. PubMed DOI
Afrayeem S.M., Chaurasia A.K. Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.) J. Pharmacogn. Phytochem. 2017;6:1564–1566.
Solgi M. Evaluation of plant-mediated Silver nanoparticles synthesis and its application in postharvest Physiology of cut Flowers. Physiol. Mol. Biol. Plants. 2014;20:279–285. doi: 10.1007/s12298-014-0237-3. PubMed DOI PMC
Gorczyca A., Pociecha E., Kasprowicz M., Niemiec M. Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur. J. Plant Pathol. 2015;142:251–261. doi: 10.1007/s10658-015-0608-9. DOI
Wu X., Hu J., Wu F., Zhang X., Wang B., Yang Y., Shen G., Liu J., Tao S., Wang X. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard Mater. 2021;405:124047. doi: 10.1016/j.jhazmat.2020.124047. PubMed DOI
Singh A., Singh N.B., Hussain I., Singh H., Singh S.C. Plant-nanoparticle interaction: An approach to improve agricultural practices and plant productivity. Int. J. Pharm. Sci. Invent. 2015;4:25–40.
Olchowik J., Bzdyk R., Studnicki M., Bederska-Błaszczyk M., Urban A., Aleksandrowicz-Trzcińska M. The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment. Forests. 2017;8:310. doi: 10.3390/f8090310. DOI
Moussa S.H., Tayel A.A., Alsohim A.S., Abdallah R.R. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J. Food Sci. 2013;78:M1589–M1594. doi: 10.1111/1750-3841.12247. PubMed DOI
Chu H., Kim H.-J., Su Kim J., Kim M.-S., Yoon B.-D., Park H.-J., Kim C.Y. A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. Radiat. Phys. Chem. 2012;81:180–184. doi: 10.1016/j.radphyschem.2011.10.004. DOI
Ocsoy I., Paret M.L., Ocsoy M.A., Kunwar S., Chen T., You M., Tan W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. Am. Chem. Soc. 2013;7:8972–8980. doi: 10.1021/nn4034794. PubMed DOI PMC
Swingle W.T. A List of the Kansas Species of Peronosporaceae. Trans. Annu. Meet. Kans. Acad. Sci. 1887;11:63. doi: 10.2307/3623671. DOI
Aziz A., Trotel-Aziz P., Dhuicq L., Jeandet P., Couderchet M., Vernet G. Chitosan Oligomers and Copper Sulfate Induce Grapevine Defense Reactions and Resistance to Gray Mold and Downy Mildew. Phytopathology. 2006;96:1188–1194. doi: 10.1094/PHYTO-96-1188. PubMed DOI
Egger E. Prevention is essential in the fight against peronospora. Inf. Agrar. 2009;65:39–52.
Jedlička J., Novotná B., Valšíková M. Evaluation of influence of the locality, the vintage year, wine variety and fermentation process on volume of cooper and lead in wine. Potravinarstvo. 2014;8:290–295. doi: 10.5219/403. DOI
Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 2009;29:69–78. doi: 10.1002/jat.1385. PubMed DOI
Ponmurugan P., Manjukarunambika K., Elango V., Gnanamangai B.M. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J. Exp. Nanosci. 2016;11:1019–1031. doi: 10.1080/17458080.2016.1184766. DOI
Giannousi K., Avramidis I., Dendrinou-Samara C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013;3:21743–21752. doi: 10.1039/c3ra42118j. DOI
Sathiyabama M., Manikandan A. Application of Copper-Chitosan Nanoparticles Stimulate Growth and Induce Resistance in Finger Millet (Eleusine coracana Gaertn.) Plants against Blast Disease. J. Agric. Food Chem. 2018;66:1784–1790. doi: 10.1021/acs.jafc.7b05921. PubMed DOI
He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI
Sardella D., Gatt R., Valdramidis V.P. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res. Int. 2017;101:274–279. doi: 10.1016/j.foodres.2017.08.019. PubMed DOI
Wani A.H., Shah M.A. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J. Appl. Pharm. Sci. 2012;2:40–44.
Graham J.H., Johnson E.G., Myers M.E., Young M., Rajasekaran P., Das S., Santra S. Potential of Nano-Formulated Zinc Oxide for Control of Citrus Canker on Grapefruit Trees. Plant Dis. 2016;100:2442–2447. doi: 10.1094/PDIS-05-16-0598-RE. PubMed DOI
Luksiene Z., Rasiukeviciute N., Zudyte B., Uselis N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J. Photochem. Photobiol. B. 2020;203:111656. doi: 10.1016/j.jphotobiol.2019.111656. PubMed DOI
Xin Q., Shah H., Nawaz A., Xie W., Akram M.Z., Batool A., Tian L., Jan S.U., Boddula R., Guo B., et al. Antibacterial Carbon-Based Nanomaterials. Adv. Mater. 2019;31:e1804838. doi: 10.1002/adma.201804838. PubMed DOI
Wang X., Liu X., Han H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf B Biointerfaces. 2013;103:136–142. doi: 10.1016/j.colsurfb.2012.09.044. PubMed DOI
Chen J., Wang X., Han H. A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanoparticle Res. 2013;15:1658. doi: 10.1007/s11051-013-1658-6. DOI
Wang X., Liu X., Chen J., Han H., Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014;68:798–806. doi: 10.1016/j.carbon.2013.11.072. DOI
Siddiqui Z.A., Parveen A., Ahmad L., Hashem A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci. Hortic. 2019;249:374–382. doi: 10.1016/j.scienta.2019.01.054. DOI
Deshpande A.S., Khomane R.B., Vaidya B.K., Joshi R.M., Harle A.S., Kulkarni B.D. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion. Nanoscale Res. Lett. 2008;3:221–229. doi: 10.1007/s11671-008-9140-6. DOI
Choudhury S.R., Ghosh M., Mandal A., Chakravorty D., Pal M., Pradhan S., Goswami A. Surface-modified sulfur nanoparticles: An effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 2011;90:733–743. doi: 10.1007/s00253-011-3142-5. PubMed DOI
Rao K.J., Paria S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv. 2013;3:10471–10478. doi: 10.1039/c3ra40500a. DOI
Imada K., Sakai S., Kajihara H., Tanaka S., Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 2016;65:551–560. doi: 10.1111/ppa.12443. DOI
Shenashen M., Derbalah A., Hamza A., Mohamed A., El Safty S. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Manag. Sci. 2017;73:1121–1126. doi: 10.1002/ps.4420. PubMed DOI
Xu C., Cao L., Zhao P., Zhou Z., Cao C., Li F., Huang Q. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J. 2018;348:244–254. doi: 10.1016/j.cej.2018.05.008. DOI
Xiang Y., Zhang G., Chen C., Liu B., Cai D., Wu Z. Fabrication of a pH-Responsively Controlled-Release Pesticide Using an Attapulgite-Based Hydrogel. ACS Sustain. Chem. Eng. 2017;6:1192–1201. doi: 10.1021/acssuschemeng.7b03469. DOI
Campos E.V.R., de Oliveira J.L., Fraceto L.F., Singh B. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 2014;35:47–66. doi: 10.1007/s13593-014-0263-0. DOI
Yusoff S.N.M., Kamari A., Aljafree N.F.A. A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 2016;13:2977–2994. doi: 10.1007/s13762-016-1096-y. DOI
Xiang Y., Zhang G., Chi Y., Cai D., Wu Z. Fabrication of a controllable nanopesticide system with magnetic collectability. Chem. Eng. J. 2017;328:320–330. doi: 10.1016/j.cej.2017.07.046. DOI
Kumar S., Bhanjana G., Sharma A., Sidhu M.C., Dilbaghi N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 2014;101:1061–1067. doi: 10.1016/j.carbpol.2013.10.025. PubMed DOI
Atta S., Bera M., Chattopadhyay T., Paul A., Ikbal M., Maiti M.K., Singh N.D.P. Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: For controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Adv. 2015;5:86990–86996. doi: 10.1039/C5RA17121K. DOI
Cao L., Zhang H., Cao C., Zhang J., Li F., Huang Q. Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. Nanomaterials. 2016;6:216. doi: 10.3390/nano6070126. PubMed DOI PMC
Zhao P., Cao L., Ma D., Zhou Z., Huang Q., Pan C. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale. 2018;10:1798–1806. doi: 10.1039/C7NR08107C. PubMed DOI
Yu M., Sun C., Xue Y., Liu C., Qiu D., Cui B., Zhang Y., Cui H., Zeng Z. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention. RSC Adv. 2019;9:27096–27104. doi: 10.1039/C9RA05843E. PubMed DOI PMC
Rossi L., Fedenia L.N., Sharifan H., Ma X., Lombardini L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019;135:160–166. doi: 10.1016/j.plaphy.2018.12.005. PubMed DOI
Raliya R., Tarafdar J.C. ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.) Agric. Res. 2013;2:48–57. doi: 10.1007/s40003-012-0049-z. DOI
Marzouk N.M., Abd-Alrahman H.A., El-Tanahy A.M.M., Mahmoud S.H. Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bull. Natl. Res. Cent. 2019;43:84. doi: 10.1186/s42269-019-0127-5. DOI
Raliya R., Nair R., Chavalmane S., Wang W.N., Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7:1584–1594. doi: 10.1039/C5MT00168D. PubMed DOI
Pallavi, Mehta C.M., Srivastava R., Arora S., Sharma A.K. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6:254. doi: 10.1007/s13205-016-0567-7. PubMed DOI PMC
Abdel-Aziz H.M.M., Hasaneen M.N.A., Omer A.M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res. 2016;14:e0902. doi: 10.5424/sjar/2016141-8205. DOI
Lopes T., Cruz C., Cardoso P., Pinto R., Marques P., Figueira E. A Multifactorial Approach to Untangle Graphene Oxide (GO) Nanosheets Effects on Plants: Plant Growth-Promoting Bacteria Inoculation, Bacterial Survival, and Drought. Nanomaterials. 2021;11:771. doi: 10.3390/nano11030771. PubMed DOI PMC
Rui M., Ma C., Hao Y., Guo J., Rui Y., Tang X., Zhao Q., Fan X., Zhang Z., Hou T., et al. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea) Front Plant Sci. 2016;7:815. doi: 10.3389/fpls.2016.00815. PubMed DOI PMC
Sharifi R. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays) Environ. Exp. Biol. 2016;14:151–156. doi: 10.22364/eeb.14.21. DOI
Janmohammadi M., Amanzadeh T., Sabaghnia N., Dashti S. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov. 2016;107:265–276. doi: 10.14720/aas.2016.107.2.01. DOI
Sharifan H., Wang X., Guo B., Ma X. Investigation on the Modification of Physicochemical Properties of Cerium Oxide Nanoparticles through Adsorption of Cd and As(III)/As(V) ACS Sustain. Chem. Eng. 2018;6:13454–13461. doi: 10.1021/acssuschemeng.8b03355. DOI
Rizwan M., Ali S., ur Rehman M.Z., Malik S., Adrees M., Qayyum M.F., Alamri S.A., Alyemeni M.N., Ahmad P. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa) Acta Physiol. Plant. 2019;41:35. doi: 10.1007/s11738-019-2828-7. DOI
Bao-Shan L., Shao-Qi D., Chun-Hui L., Li-Jun F., Shu-Chun Q., Min Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res. 2004;15:138–140. doi: 10.1007/BF02856749. DOI
Ashkavand P., Tabari M., Aliyari F., Zarafshar M., Striker G.G., Shukla P.K., Sattarian A., Misra P. Nanosilicon Particle Effects on Physiology and Growth of Woody Plants. In: Faisal M., Saquib Q., Alatar A.A., Al-Khedhairy A.A., editors. Phytotoxicity of Nanoparticles. Springer International Publishing; Cham, Switzerland: 2018. pp. 285–299.
Qi Y., Lian K., Wu Q., Li Y., Danzy M., Menard R., Chin K.L., Collins D., Oliveria F., Klepzig K. Potentials of nanotechnology application in forest protection; Proceedings of the TAPPI International Conference on Nanotechnology for Renewable Materials; Washington, DC, USA. 6–8 June 2011; Peachtree Corners, Georgia: TAPPI Press; 2013. pp. 271–278.
Glick B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;2012:963401. doi: 10.6064/2012/963401. PubMed DOI PMC
Raja N. Biopesticides and Biofertilizers: Ecofriendly Sources for Sustainable Agriculture. J. Fertil. Pestic. 2013;4:e112. doi: 10.4172/2155-6202.1000e112. DOI
Mahil E.I.T., Kumar B.N.A. Foliar application of nanofertilizers in agricultural crops—A review. J. Farm. Sci. 2019;32:239–249.
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Chlpík J., Juriga M. Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC
Zhou P., Adeel M., Shakoor N., Guo M., Hao Y., Azeem I., Li M., Liu M., Rui Y. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials. 2020;11:26. doi: 10.3390/nano11010026. PubMed DOI PMC
Slomberg D.L., Schoenfisch M.H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 2012;46:10247–10254. doi: 10.1021/es300949f. PubMed DOI
Jatav G.K., De N. Application of nano-technology in soil-plant system. Asian J. Soil Sci. 2013;8:176–184.
Corradini E., de Moura M.R., Mattoso L.H.C. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 2010;4:509–515. doi: 10.3144/expresspolymlett.2010.64. DOI
Preetha P.S., Balakrishnan N. A Review of Nano Fertilizers and Their Use and Functions in Soil. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:3117–3133. doi: 10.20546/ijcmas.2017.612.364. DOI
Lee W.-M., An Y.-J., Yoon H., Kweon H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008;27:1915–1921. doi: 10.1897/07-481.1. PubMed DOI
Nowack B., Krug H.F., Height M. 120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol. 2011;45:1177–1183. doi: 10.1021/es103316q. PubMed DOI