Zinc oxide nanoparticles application alleviates salinity stress by modulating plant growth, biochemical attributes and nutrient homeostasis in Phaseolus vulgaris L

. 2024 ; 15 () : 1432258. [epub] 20240904

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39297008

Salt stress poses a significant challenge to global agriculture, adversely affecting crop yield and food production. The current study investigates the potential of Zinc Oxide (ZnO) nanoparticles (NPs) in mitigating salt stress in common beans. Salt-stressed bean plants were treated with varying concentrations of NPs (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L) using three different application methods: foliar application, nano priming, and soil application. Results indicated a pronounced impact of salinity stress on bean plants, evidenced by a reduction in fresh weight (24%), relative water content (27%), plant height (33%), chlorophyll content (37%), increased proline (over 100%), sodium accumulation, and antioxidant enzyme activity. Application of ZnO NPs reduced salt stress by promoting physiological growth parameters. The NPs facilitated enhanced plant growth and reduced reactive oxygen species (ROS) generation by regulating plant nutrient homeostasis and chlorophyll fluorescence activity. All the tested application methods effectively mitigate salt stress, with nano-priming emerging as the most effective approach, yielding results comparable to control plants for the tested parameters. This study provides the first evidence that ZnO NPs can effectively mitigate salt stress in bean plants, highlighting their potential to address salinity-induced growth inhibition in crops.

Zobrazit více v PubMed

Abbasifar A., Shahrabadi F., valizadehkaji B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 43, 1104–1118. doi: 10.1080/01904167.2020.1724305 DOI

Abdoli S., Ghassemi-Golezani K., Alizadeh-Salteh S. (2020). Responses of ajowan (Trachyspermum ammi L.) To exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ. Sci. pollut. Res. 27, 36939–36953. doi: 10.1007/s11356-020-09453-1 PubMed DOI

Adil M., Bashir S., Bashir S., Aslam Z., Ahmad N., Younas T., et al. . (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.932861 PubMed DOI PMC

Alabdallah N. M., Alzahrani H. S. (2020). The potential mitigation effect of zno nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J. Biol. Sci. 27, 3132–3137. doi: 10.1016/j.sjbs.2020.08.005 PubMed DOI PMC

Ali B., Saleem M. H., Ali S., Shahid M., Sagir M., Tahir M. B., et al. . (2022). Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.973782 PubMed DOI PMC

Assaha D. V. M., Ueda A., Saneoka H., Al-Yahyai R., Yaish M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 8. doi: 10.3389/fphys.2017.00509 PubMed DOI PMC

Avestan S., Ghasemnezhad M., Esfahani M., Byrt C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agron 9, 246. doi: 10.3390/agronomy9050246 DOI

Bacha H., Ródenas R., López-Gómez E., García-Legaz M. F., Nieves-Cordones M., Rivero R. M., et al. . (2015). High Ca2+ reverts the repression of high-affinity K+ uptake produced by Na+ in Solanum lycopersycum L. (var. Microtom) plants. J. Plant Physiol. 180, 72–79. doi: 10.1016/j.jplph.2015.03.014 PubMed DOI

Bates L. S., Waldren R. P., Teare I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. doi: 10.1007/BF00018060 DOI

Bharati R., Fernández-Cusimamani E., Gupta A., Novy P., Moses O., Severová L., et al. . (2023. a). Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind. Crops Prod. 198, 116683. doi: 10.1016/j.indcrop.2023.116683 DOI

Bharati R., Gupta A., Novy P., Severová L., Šrédl K., Žiarovská J., et al. . (2023. b). Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1332428 PubMed DOI PMC

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3 PubMed DOI

Burman U., Saini M., Kumar P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 95, 605–612. doi: 10.1080/02772248.2013.803796 DOI

Davarpanah S., Tehranifar A., Davarynejad G., Abadía J., Khorasani R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. (Amsterdam). 210, 57–64. doi: 10.1016/j.scienta.2016.07.003 DOI

Dilnawaz F., Kalaji M. H., Misra A. N. (2023). Nanotechnology in improving photosynthesis under adverse climatic conditions: Cell to Canopy action. Plant Nano Biol. 4, 100035. doi: 10.1016/j.plana.2023.100035 DOI

Du Z., Bramlage W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem. 40, 1566–1570. doi: 10.1021/jf00021a018 DOI

El-Badri A. M. A., Batool M., Mohamed I. A. A., Khatab A., Sherif A., Wang Z., et al. . (2021). Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). Plant Physiol. Biochem. 166, 376–392. doi: 10.1016/j.plaphy.2021.05.040 PubMed DOI

El-Badri A. M., Batool M., Mohamed I. A. A., Wang Z., Wang C., Tabl K. M., et al. . (2022). Mitigation of the salinity stress in rapeseed (Brassica napus L.) Productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ. pollut. 310, 119815. doi: 10.1016/j.envpol.2022.119815 PubMed DOI

Elshoky H. A., Yotsova E., Farghali M. A., Farroh K. Y., El-Sayed K., Elzorkany H. E., et al. . (2021). Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. Under salt stress. Plant Physiol. Biochem. 167, 607–618. doi: 10.1016/j.plaphy.2021.08.039 PubMed DOI

Faizan M., Akhter Bhat J., Chen C., AlYemeni M. N., Wijaya L., Ahmad P., et al. . (2021. a). Hetic machinery in tomatozinc oxide nanoparticles (zno-nps) induce salt tolerance by improving the antioxidant system and photosynt. Plant Physiol. Biochem. 161, 122–130. doi: 10.1016/j.plaphy.2021.02.002 PubMed DOI

Faizan M., Bhat J. A., Chen C., AlYemeni M. N., Wijaya L., Ahmad P., et al. . (2021. b). Zinc oxide nanoparticles (zno-nps) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 161, 122–130. doi: 10.1016/j.plaphy.2021.02.002 PubMed DOI

Farooq T., Akram M. N., Hameed A., Ahmed T., Hameed A. (2021). Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC Plant Biol. 22, 540. doi: 10.1186/s12870-022-03912-2 PubMed DOI PMC

Farouk S., Al-Amri S. M. (2019). Exogenous Zinc Forms Counteract nacl-Induced Damage by Regulating the Antioxidant System, Osmotic Adjustment Substances, and Ions in Canola (Brassica napus L. Cv. Pactol) Plants. J. Soil Sci. Plant Nutr. 19, 887–899. doi: 10.1007/s42729-019-00087-y DOI

Fatemi H., Esmaiel Pour B., Rizwan M. (2021). Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) Plants grown in lead (Pb)-spiked soil. Environ. Sci. pollut. Res. 28, 1417–1425. doi: 10.1007/s11356-020-10549-x PubMed DOI

Foroutan l., mahmood s., Abdossi V., Fakheri B. A., Mahdinezhad N., Gholamipourfard K., et al. . (2019). The effects of zinc oxide nanoparticles on drought stress in moringa peregrina populations. Int. J. Basic Sci. Med. 4, 119–127. doi: 10.15171/ijbsm.2019.22 DOI

Garcia C. L., Dattamudi S., Chanda S., Jayachandran K. (2019). Effect of salinity stress and microbial inoculations on glomalin production and plant growth parameters of snap bean (Phaseolus vulgaris). Agron 9, 545. doi: 10.3390/agronomy9090545 DOI

Ghassemi-Golezani K., Abdoli S. (2021). Improving atpase and ppase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Rep. 40, 559–573. doi: 10.1007/s00299-020-02652-7 PubMed DOI

Giannopolitis C. N., Ries S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309–314. doi: 10.1104/pp.59.2.309 PubMed DOI PMC

Guha T., Ravikumar K. V. G., Mukherjee A., Mukherjee A., Kundu R. (2018). Nanopriming with zero valent iron (nzvi) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol. Biochem. PPB 127, 403–413. doi: 10.1016/j.plaphy.2018.04.014 PubMed DOI

Guo Y. Y., Nie H. S., Yu H. Y., Kong D. S., Wu J. Y. (2019). Effect of salt stress on the growth and photosystem II photochemical characteristics of lycium ruthenicum murr. Seedlings. Photosynthetica 57, 564–571. doi: 10.32615/ps.2019.068 DOI

Hasegawa P. M., Bressan R. A., Zhu J.-K., Bohnert H. J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499. doi: 10.1146/annurev.arplant.51.1.463 PubMed DOI

Hayat S., Hayat Q., AlYemeni M. N., Wani A. S., Pichtel J., Ahmad A. (2012). Role of proline under changing environments: A review. Plant Signal. Behav. 7, 1456–1466. doi: 10.4161/psb.21949 PubMed DOI PMC

Jajoo A. (2013). Changes in photosystem II in response to salt stress. Ecophysiol. Responses Plants under Salt Stress 9781461447474, 149–168. doi: 10.1007/978-1-4614-4747-4_5/COVER DOI

Jamil A., Riaz S., Ashraf M., Foolad M. R. (2011). Gene expression profiling of plants under salt stress. CRC. Crit. Rev. Plant Sci. 30, 435–458. doi: 10.1080/07352689.2011.605739 DOI

Juhel G., Batisse E., Hugues Q., Daly D., van Pelt F. N. A. M., O’Halloran J., et al. . (2011). Alumina nanoparticles enhance growth of Lemna minor. Aquat. Toxicol. 105, 328–336. doi: 10.1016/j.aquatox.2011.06.019 PubMed DOI

Junglee S., Urban L., Sallanon H., Lopez-Lauri F. (2014). Optimized assay for hydrogen perox-ide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 5, 730–736. doi: 10.4236/ajac.2014.511081 DOI

Khatri K., Rathore M. S. (2019). Photosystem photochemistry, prompt and delayed fluorescence, photosynthetic responses and electron flow in tobacco under drought and salt stress. Photosynthetica 57, 61–74. doi: 10.32615/ps.2019.028 DOI

Kumari R., Bhatnagar S., Mehla N., Vashistha A. (2022). Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress … A review. Plant Stress 6, 100111. doi: 10.1016/j.stress.2022.100111 DOI

Li Y., Liang L., Li W., Ashraf U., Ma L., Tang X., et al. . (2021). Zno nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J. Nanobiotechnol 19, 75. doi: 10.1186/s12951-021-00820-9 PubMed DOI PMC

Lück H. (1965). Catalase. Methods Enzym. Anal., 885–894. doi: 10.1016/B978-0-12-395630-9.50158-4 DOI

MAEHLY A. C., CHANCE B. (1954). The assay of catalases and peroxidases. Methods Biochem. Anal. 1, 357–424. doi: 10.1002/9780470110171.CH14 PubMed DOI

Mahawar L., Barboricova M., Kovár M., Filaček A., Ferencova J., Brestič M., et al. . (2024). Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. Under salinity stress. Plant Physiol. Biochem. 206, 108281. doi: 10.1016/j.plaphy.2023.108281 PubMed DOI

Mahdieh M., Sangi M. R., Bamdad F., Ghanem A. (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. J. Plant Nutr. 41, 2401–2412. doi: 10.1080/01904167.2018.1510517 DOI

Mahmoud A. W. M., Abdelaziz S. M., El-Mogy M. M., Abdeldaym E. A. (2019). Effect of foliar zno and feo nanoparticles application on growth and nutritional quality of red radish and assessment of their accumulation on human health. Agric 65, 16–29. doi: 10.2478/AGRI-2019-0002 DOI

Manishankar P., Wang N., Köster P., Alatar A. A., Kudla J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. J. Exp. Bot. 69, 4215–4226. doi: 10.1093/jxb/ery201 PubMed DOI

Mogazy A. M., Mohamed H. I., El-Mahdy O. M. (2022). Calcium and iron nanoparticles: A positive modulator of innate immune responses in strawberry against Botrytis cinerea. Process Biochem. 115, 128–145. doi: 10.1016/j.procbio.2022.02.014 DOI

Mohammadi H., Mousavi Z., Hazrati S., Aghaee A., Bovand F., Brestic M. (2023). Foliar applied titanium dioxide nanoparticles (tio2 nps) modulate growth, physiological and phytochemical traits in Melissa officinalis L. Under various light intensities. Ind. Crops Prod. 197, 116642. doi: 10.1016/j.indcrop.2023.116642 DOI

Moradbeygi H., Jamei R., Heidari R., Darvishzadeh R. (2020). Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. Plant under salinity stress. Sci. Hortic. (Amsterdam). 272, 109537. doi: 10.1016/j.scienta.2020.109537 DOI

Mullan D., Pietragalla J. (2012). Chapter 5. Leaf relative water content. Canopy Temp. Stomatal Conduct. Water Relat. Trait. 25–27.

Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911 PubMed DOI

Nasrallah A. K., Kheder A. A., Kord M. A., Fouad A. S., El-Mogy M. M., Atia M. A. M. (2022). Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application. Horticulturae 8, 75. doi: 10.3390/horticulturae8010075 DOI

Pérez-Labrada F., López-Vargas E. R., Ortega-Ortiz H., Cadenas-Pliego G., Benavides-Mendoza A., Juárez-Maldonado A. (2019). Responses of Tomato Plants under Saline Stress to. Plants 8, 1–17. doi: 10.3390/plants8060151 PubMed DOI PMC

Qados A. M. S. A. (2010). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences 10, 7–15. doi: 10.1016/j.jssas.2010.06.002 DOI

Rai-Kalal P., Jajoo A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol. Biochem. 160, 341–351. doi: 10.1016/j.plaphy.2021.01.032 PubMed DOI

Rasheed A., Li H., Tahir M. M., Mahmood A., Nawaz M., Shah A. N., et al. . (2022). The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.976179 PubMed DOI PMC

Rizwan M., Ali S., ur Rehman M. Z., Malik S., Adrees M., Qayyum M. F., et al. . (2019). Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol. Plant 41, 1–12. doi: 10.1007/s11738-019-2828-7 DOI

Salehi H., Cheheregani Rad A., Raza A., Djalovic I., Prasad P. V. V. (2023). The comparative effects of manganese nanoparticles and their counterparts (bulk and ionic) in Artemisia annua plants via seed priming and foliar application. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1098772 PubMed DOI PMC

Schützendübel A., Polle A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization., in. J. Exp. Bot. 53, 1351–1365. doi: 10.1093/jexbot/53.372.1351 PubMed DOI

Schwab F., Zhai G., Kern M., Turner A., Schnoor J. L., Wiesner M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology 10, 257–278. doi: 10.3109/17435390.2015.1048326 PubMed DOI

Sharma P., Dubey R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46, 209–221. doi: 10.1007/s10725-005-0002-2 DOI

Shrivastava P., Kumar R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131. doi: 10.1016/j.sjbs.2014.12.001 PubMed DOI PMC

Singh A. (2019). An overview of drainage and salinization problems of irrigated lands. Irrig. Drain. 68, 551–558. doi: 10.1002/ird.2344 DOI

Singh A., Sengar R. S., Rajput V. D., Minkina T., Singh R. K. (2022). Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agric 12, 1014. doi: 10.3390/agriculture12071014 DOI

Singh A., Singh N. B., Afzal S., Singh T., Hussain I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 53, 185–201. doi: 10.1007/s10853-017-1544-1 DOI

Singleton V. L., Rossi J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144 LP–158. doi: 10.5344/ajev.1965.16.3.144 DOI

Smirnoff N., Arnaud D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytol. 221, 1197–1214. doi: 10.1111/nph.15488 PubMed DOI

Sudhir P., Murthy S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42, 481–486. doi: 10.1007/S11099-005-0001-6/METRICS DOI

Sun L., Song F., Zhu X., Liu S., Liu F., Wang Y., et al. . (2021). Nano-zno alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch. Agron. Soil Sci. 67, 245–259. doi: 10.1080/03650340.2020.1723003 DOI

Taïbi K., Taïbi F., Abderrahim L. A., Ennajah A., Belkhodja M., Mulet J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 105, 306–312. doi: 10.1016/j.sajb.2016.03.011 DOI

Tavallali V., Rahemi M., Maftoun M., Panahi B., Karimi S., Ramezanian A., et al. . (2021). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Sci. Hortic. 123, 272–279. doi: 10.1016/j.scienta.2009.09.006 DOI

Tourinho P. S., van Gestel C. A. M., Lofts S., Svendsen C., Soares A. M. V. M., Loureiro S. (2012). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31, 1679–1692. doi: 10.1002/etc.1880 PubMed DOI

Ul Haq T., Ullah R., Khan M. N., Nazish M., Almutairi S. M., Rasheed R. A. (2023). Seed priming with glutamic-acid-functionalized iron nanoparticles modulating response of vigna radiata (L.) R. Wilczek (Mung bean) to induce osmotic stress. Micromachines 14, 736. doi: 10.3390/mi14040736 PubMed DOI PMC

Vaghar M. S., Sayfzadeh S., Zakerin H. R., Kobraee S., Valadabadi S. A. (2020). Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 43, 2740–2756. doi: 10.1080/01904167.2020.1793180 DOI

Wohlmuth J., Tekielska D., Čechová J., Baránek M. (2022). Interaction of the nanoparticles and plants in selective growth stages—Usual effects and resulting impact on usage perspectives. Plants 11, 2405. doi: 10.3390/plants11182405 PubMed DOI PMC

Wu Z. H., Yang C. W., Yang M. Y. (2014). Photosynthesis, photosystem II efficiency, amino acid metabolism and ion distribution in rice (Oryza sativa L.) In response to alkaline stress. Photosynthetica 52, 157–160. doi: 10.1007/s11099-014-0002-4 DOI

Zahra N., Al Hinai M. S., Hafeez M. B., Rehman A., Wahid A., Siddique K. H. M., et al. . (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol. Biochem. 178, 55–69. doi: 10.1016/j.plaphy.2022.03.003 PubMed DOI

Zia-ur-Rehman M., Mfarrej M. F. B., Usman M., Anayatullah S., Rizwan M., Alharby H. F., et al. . (2023). Effect of iron nanoparticles and conventional sources of Fe on growth, physiology and nutrient accumulation in wheat plants grown on normal and salt-affected soils. J. Hazard. Mater. 458, 131861. doi: 10.1016/j.jhazmat.2023.131861 PubMed DOI

Zulfiqar F., Ashraf M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 160, 257–268. doi: 10.1016/j.plaphy.2021.01.028 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace