Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L

. 2023 ; 14 () : 1332428. [epub] 20231214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38155852

Melissa officinalis L., a well-known herb with diverse industrial and ethnopharmacological properties. Although, there has been a significant lack in the breeding attempts of this invaluable herb. This study aimed to enhance the agronomical traits of M. officinalis through in vitro polyploidization. Nodal segments were micropropagated and subjected to oryzalin treatment at concentrations of 20, 40, and 60 mM for 24 and 48 hours. Flow cytometry, chromosome counting, and stomatal characteristics were employed to confirm the ploidy level of the surviving plants. The survival rate of the treated explants decreased exponentially with increasing oryzalin concentration and duration. The highest polyploid induction rate (8%) was achieved with 40 mM oryzalin treatment for 24 hours. The induced tetraploid plants exhibited vigorous growth, characterized by longer shoots, larger leaves, and a higher leaf count. Chlorophyll content and fluorescence parameters elucidated disparities in photosynthetic performance between diploid and tetraploid genotypes. Tetraploid plants demonstrated a 75% increase in average essential oil yield, attributed to the significantly larger size of peltate trichomes. Analysis of essential oil composition in diploid and tetraploid plants indicated the presence of three major components: geranial, neral, and citronellal. While citronellal remained consistent, geranial and neral increased by 11.06% and 9.49%, respectively, in the tetraploid population. This effective methodology, utilizing oryzalin as an anti-mitotic agent for polyploid induction in M. officinalis, resulted in a polyploid genotype with superior morpho-physiological traits. The polyploid lemon balm generated through this method has the potential to meet commercial demands and contribute significantly to the improvement of lemon balm cultivation.

Zobrazit více v PubMed

Adams R. P. (2007). Identification of essential oil compounds by gas chromatography. Quadrupole Mass Spectroscopy.

Aprotosoaie A. C., Luca V. S., Trifan A., Miron A. (2019). “Antigenotoxic potential of some dietary non-phenolic phytochemicals,” in Studies in natural products chemistry (Amsterdam, The Netherlands: Elsevier; ), 223–297. doi: 10.1016/B978-0-444-64181-6.00007-3 DOI

Ascough G. D., van Staden J., Erwin J. E. (2008). Effectiveness of Colchicine and Oryzalin at Inducing Polyploidy in Watsonia lepida N.E. Brown. horts 43, 2248–2251. doi: 10.21273/HORTSCI.43.7.2248 DOI

Avenson T. J., Kanazawa A., Cruz J. A., Takizawa K., Ettinger W. E., Kramer D. M. (2005). Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ. 28, 97–109. doi: 10.1111/j.1365-3040.2005.01294.x DOI

PubMed DOI

PubMed DOI

Beranová K., Bharati R., Žiarovská J., Bilčíková J., Hamouzová K., Klíma M., et al. . (2022). Morphological, cytological, and molecular comparison between diploid and induced autotetraploids of callisia fragrans (Lindl.) woodson. Agronomy 12, 2520. doi: 10.3390/agronomy12102520 DOI

Bharati R., Fernández-Cusimamani E., Gupta A., Novy P., Moses O., Severová L., et al. . (2023. a). Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind. Crops Products 198, 116683. doi: 10.1016/j.indcrop.2023.116683 DOI

PubMed DOI PMC

Bhattarai K., Kareem A., Deng Z. (2021). In vivo induction and characterization of polyploids in gerbera daisy. Scientia Hortic. 282, 110054. doi: 10.1016/j.scienta.2021.110054 DOI

Borgheei S. F., Sarikhani H., Chaichi M., Kashi A. (2010). In vitro induction of polyploidy in lemon balm (Melissa officinalis L.). Iranian J. Medicinal Aromatic Plants 26, Pe283–Pe295.

PubMed DOI

Dastmalchi K., Damien Dorman H. J., Oinonen P. P., Darwis Y., Laakso I., Hiltunen R. (2008). Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT - Food Sci. Technol. 41, 391–400. doi: 10.1016/j.lwt.2007.03.007 DOI

PubMed DOI PMC

Dhooghe E., Van Laere K., Eeckhaut T., Leus L., Van Huylenbroeck J. (2011). Mitotic chromosome doubling of plant tissues in vitro . Plant Cell Tiss Organ Cult 104, 359–373. doi: 10.1007/s11240-010-9786-5 DOI

Ding L., Liu R., Gao Y., Xiao J., Lv Y., Zhou J., et al. . (2023). Effect of tetraploidization on morphological and fertility characteristics in Iris × norrisii Lenz. Scientia Hortic. 322, 112403. doi: 10.1016/j.scienta.2023.112403 DOI

Ebrahimzadeh H., Soltanloo H., Shariatpanahi M. E., Eskandari A., Ramezanpour S. S. (2018). Improved chromosome doubling of parthenogenetic haploid plants of cucumber (Cucumis sativus L.) using colchicine, trifluralin, and oryzalin. Plant Cell Tiss Organ Cult 135, 407–417. doi: 10.1007/s11240-018-1473-y DOI

Eng W.-H., Ho W.-S. (2019). Polyploidization using colchicine in horticultural plants: A review. Scientia Hortic. 246, 604–617. doi: 10.1016/j.scienta.2018.11.010 DOI

Feng H., Wang M., Cong R., Dai S. (2017). Colchicine- and trifluralin-mediated polyploidization of Rosa multiflora Thunb. var. inermis and Rosa roxburghii f. normalis . J. Hortic. Sci. Biotechnol. 92, 279–287. doi: 10.1080/14620316.2016.1249964 DOI

PubMed DOI PMC

García-García A. L., Grajal-Martín M. J., González-Rodríguez Á.M. (2020). Polyploidization enhances photoprotection in the first stages of Mangifera indica. Scientia Hortic. 264, 109198. doi: 10.1016/j.scienta.2020.109198 DOI

Grant B. W., Vatnick I. (2004). Environmental correlates of leaf stomata density. Experiments Ecol. 1, 1–24.

Homaidan Shmeit Y., Fernandez E., Novy P., Kloucek P., Orosz M., Kokoska L. (2020). Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Scientia Hortic. 263, 109095. doi: 10.1016/j.scienta.2019.109095 DOI

Iannicelli J., Elechosa M. A., Juárez M. A., Martínez A., Bugallo V., Bandoni A. L., et al. . (2016). Effect of polyploidization in the production of essential oils in Lippia integrifolia. Ind. Crops Products 81, 20–29. doi: 10.1016/j.indcrop.2015.11.053 DOI

PubMed DOI PMC

PubMed DOI PMC

Liao P.-C., Yang T.-S., Chou J.-C., Chen J., Lee S.-C., Kuo Y.-H., et al. . (2015). Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. J. Funct. Foods 19, 248–258. doi: 10.1016/j.jff.2015.09.034 DOI

Manzoor A., Ahmad T., Bashir M. A., Baig M. M. Q., Quresh A. A., Shah M. K. N., et al. . (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity.’. Folia Hortic. 30, 307–319. doi: 10.2478/fhort-2018-0026 DOI

PubMed DOI PMC

Moetamedipoor S. A., Jowkar A., Saharkhiz M. J., Hassani H. S. (2022). Hexaploidy induction improves morphological, physiological and phytochemical characteristics of mojito mint (Mentha × villosa). Scientia Hortic. 295, 110810. doi: 10.1016/j.scienta.2021.110810 DOI

PubMed DOI PMC

PubMed DOI

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. PHYSIOLOGIA PLANTARUM 15 (3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI

Niazian M., Nalousi A. M. (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tiss Organ Cult 142, 447–469. doi: 10.1007/s11240-020-01888-1 DOI

PubMed DOI PMC

PubMed DOI PMC

Rêgo M. M., Rêgo E. R., Bruckner C. H., Finger F. L., Otoni W. C. (2011). In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell Tiss Organ Cult 107, 451–459. doi: 10.1007/s11240-011-9995-6 DOI

Sadat Noori S. A., Norouzi M., Karimzadeh G., Shirkool K., Niazian M. (2017). Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tiss Organ Cult 130, 543–551. doi: 10.1007/s11240-017-1245-0 DOI

Sakhanokho H. F., Rajasekaran K., Kelley R. Y., Islam-Faridi N. (2009). Induced polyploidy in diploid ornamental ginger (Hedychium muluense R. M. Smith) using colchicine and oryzalin. horts 44, 1809–1814. doi: 10.21273/HORTSCI.44.7.1809 DOI

Salma U., Kundu S., Mandal N. (2017). Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 20, 9–19. doi: 10.1007/s12892-016-0080-1 DOI

PubMed DOI

Shariat A., Sefidkon F. (2021). Tetraploid induction in savory (Satureja khuzistanica): cytological, morphological, phytochemical and physiological changes. Plant Cell Tiss Organ Cult 146, 137–148. doi: 10.1007/s11240-021-02053-y DOI

PubMed DOI

PubMed DOI

Talebi S. F., Saharkhiz M. J., Kermani M. J., Sharafi Y., Raouf Fard F. (2017). Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia 70, 184–193. doi: 10.1080/00087114.2017.1318502 DOI

Talei D., Fotokian M. H. (2020). Improving growth indices and productivity of phytochemical compounds in Lemon balm (Melissa officinalis L.) via Induced Polyploidy. bta 101, 215–226. doi: 10.5114/bta.2020.97880 DOI

PubMed DOI PMC

Tsuda H., Kunitake H., Yamasaki M., Komatsu H., Yoshioka K. (2013). Production of intersectional hybrids between colchicine-induced tetraploid shashanbo (Vaccinium bracteatum) and highbush blueberry ‘Spartan.’. J. Amer. Soc Hortic. Sci. 138, 317–324. doi: 10.21273/JASHS.138.4.317 DOI

PubMed DOI PMC

Yadegari M. (2017). Effects of zn, fe, mn and cu foliar application on essential oils and morpho-physiological traits of lemon balm (Melissa officinalis L.). J. Essential Oil Bearing Plants 20, 485–495. doi: 10.1080/0972060X.2017.1325010 DOI

Zahumenická P., Fernández E., Šedivá J., Žiarovská J., Ros-Santaella J. L., Martínez-Fernández D., et al. . (2018). Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L. Plant Cell Tiss Organ Cult 132, 317–327. doi: 10.1007/s11240-017-1331-3 DOI

Zhou J., Guo F., Fu J., Xiao Y., Wu J. (2020). In vitro polyploid induction using colchicine for Zingiber Officinale Roscoe cv. ‘Fengtou’ ginger. Plant Cell Tiss Organ Cult 142, 87–94. doi: 10.1007/s11240-020-01842-1 DOI

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...