Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38155852
PubMed Central
PMC10752996
DOI
10.3389/fpls.2023.1332428
Knihovny.cz E-zdroje
- Klíčová slova
- Melissa officinalis, chromosome doubling, crop improvement, essential oil, oryzalin, polyploid induction, polyploidization,
- Publikační typ
- časopisecké články MeSH
Melissa officinalis L., a well-known herb with diverse industrial and ethnopharmacological properties. Although, there has been a significant lack in the breeding attempts of this invaluable herb. This study aimed to enhance the agronomical traits of M. officinalis through in vitro polyploidization. Nodal segments were micropropagated and subjected to oryzalin treatment at concentrations of 20, 40, and 60 mM for 24 and 48 hours. Flow cytometry, chromosome counting, and stomatal characteristics were employed to confirm the ploidy level of the surviving plants. The survival rate of the treated explants decreased exponentially with increasing oryzalin concentration and duration. The highest polyploid induction rate (8%) was achieved with 40 mM oryzalin treatment for 24 hours. The induced tetraploid plants exhibited vigorous growth, characterized by longer shoots, larger leaves, and a higher leaf count. Chlorophyll content and fluorescence parameters elucidated disparities in photosynthetic performance between diploid and tetraploid genotypes. Tetraploid plants demonstrated a 75% increase in average essential oil yield, attributed to the significantly larger size of peltate trichomes. Analysis of essential oil composition in diploid and tetraploid plants indicated the presence of three major components: geranial, neral, and citronellal. While citronellal remained consistent, geranial and neral increased by 11.06% and 9.49%, respectively, in the tetraploid population. This effective methodology, utilizing oryzalin as an anti-mitotic agent for polyploid induction in M. officinalis, resulted in a polyploid genotype with superior morpho-physiological traits. The polyploid lemon balm generated through this method has the potential to meet commercial demands and contribute significantly to the improvement of lemon balm cultivation.
Zobrazit více v PubMed
Adams R. P. (2007). Identification of essential oil compounds by gas chromatography. Quadrupole Mass Spectroscopy.
Aprotosoaie A. C., Luca V. S., Trifan A., Miron A. (2019). “Antigenotoxic potential of some dietary non-phenolic phytochemicals,” in Studies in natural products chemistry (Amsterdam, The Netherlands: Elsevier; ), 223–297. doi: 10.1016/B978-0-444-64181-6.00007-3 DOI
Ascough G. D., van Staden J., Erwin J. E. (2008). Effectiveness of Colchicine and Oryzalin at Inducing Polyploidy in Watsonia lepida N.E. Brown. horts 43, 2248–2251. doi: 10.21273/HORTSCI.43.7.2248 DOI
Avenson T. J., Kanazawa A., Cruz J. A., Takizawa K., Ettinger W. E., Kramer D. M. (2005). Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ. 28, 97–109. doi: 10.1111/j.1365-3040.2005.01294.x DOI
Bakkali F., Averbeck S., Averbeck D., Idaomar M. (2008). Biological effects of essential oils – A review. Food Chem. Toxicol. 46, 446–475. doi: 10.1016/j.fct.2007.09.106 PubMed DOI
Banks J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiol. 37, 1128–1136. doi: 10.1093/treephys/tpx059 PubMed DOI
Beranová K., Bharati R., Žiarovská J., Bilčíková J., Hamouzová K., Klíma M., et al. . (2022). Morphological, cytological, and molecular comparison between diploid and induced autotetraploids of callisia fragrans (Lindl.) woodson. Agronomy 12, 2520. doi: 10.3390/agronomy12102520 DOI
Bharati R., Fernández-Cusimamani E., Gupta A., Novy P., Moses O., Severová L., et al. . (2023. a). Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind. Crops Products 198, 116683. doi: 10.1016/j.indcrop.2023.116683 DOI
Bharati R., Sen M. K., Severová L., Svoboda R., Fernández-Cusimamani E. (2023. b). Polyploidization and genomic selection integration for grapevine breeding: a perspective. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1248978 PubMed DOI PMC
Bhattarai K., Kareem A., Deng Z. (2021). In vivo induction and characterization of polyploids in gerbera daisy. Scientia Hortic. 282, 110054. doi: 10.1016/j.scienta.2021.110054 DOI
Borgheei S. F., Sarikhani H., Chaichi M., Kashi A. (2010). In vitro induction of polyploidy in lemon balm (Melissa officinalis L.). Iranian J. Medicinal Aromatic Plants 26, Pe283–Pe295.
Cao Q., Zhang X., Gao X., Wang L., Jia G. (2018). Effects of ploidy level on the cellular, photochemical and photosynthetic characteristics in Lilium FO hybrids. Plant Physiol. Biochem. 133, 50–56. doi: 10.1016/j.plaphy.2018.10.027 PubMed DOI
Dastmalchi K., Damien Dorman H. J., Oinonen P. P., Darwis Y., Laakso I., Hiltunen R. (2008). Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT - Food Sci. Technol. 41, 391–400. doi: 10.1016/j.lwt.2007.03.007 DOI
De Souza I. D., Melo E. S. P., Nascimento V. A., Pereira H. S., Silva K. R. N., Espindola P. R., et al. . (2021). Potential health risks of macro- and microelements in commercial medicinal plants used to treatment of diabetes. BioMed. Res. Int. 2021, 1–11. doi: 10.1155/2021/6678931 PubMed DOI PMC
Dhooghe E., Van Laere K., Eeckhaut T., Leus L., Van Huylenbroeck J. (2011). Mitotic chromosome doubling of plant tissues in vitro . Plant Cell Tiss Organ Cult 104, 359–373. doi: 10.1007/s11240-010-9786-5 DOI
Ding L., Liu R., Gao Y., Xiao J., Lv Y., Zhou J., et al. . (2023). Effect of tetraploidization on morphological and fertility characteristics in Iris × norrisii Lenz. Scientia Hortic. 322, 112403. doi: 10.1016/j.scienta.2023.112403 DOI
Ebrahimzadeh H., Soltanloo H., Shariatpanahi M. E., Eskandari A., Ramezanpour S. S. (2018). Improved chromosome doubling of parthenogenetic haploid plants of cucumber (Cucumis sativus L.) using colchicine, trifluralin, and oryzalin. Plant Cell Tiss Organ Cult 135, 407–417. doi: 10.1007/s11240-018-1473-y DOI
Eng W.-H., Ho W.-S. (2019). Polyploidization using colchicine in horticultural plants: A review. Scientia Hortic. 246, 604–617. doi: 10.1016/j.scienta.2018.11.010 DOI
Feng H., Wang M., Cong R., Dai S. (2017). Colchicine- and trifluralin-mediated polyploidization of Rosa multiflora Thunb. var. inermis and Rosa roxburghii f. normalis . J. Hortic. Sci. Biotechnol. 92, 279–287. doi: 10.1080/14620316.2016.1249964 DOI
Gantait S., Mukherjee E. (2021). Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. J. Genet. Eng. Biotechnol. 19, 4. doi: 10.1186/s43141-020-00109-8 PubMed DOI PMC
García-García A. L., Grajal-Martín M. J., González-Rodríguez Á.M. (2020). Polyploidization enhances photoprotection in the first stages of Mangifera indica. Scientia Hortic. 264, 109198. doi: 10.1016/j.scienta.2020.109198 DOI
Grant B. W., Vatnick I. (2004). Environmental correlates of leaf stomata density. Experiments Ecol. 1, 1–24.
Homaidan Shmeit Y., Fernandez E., Novy P., Kloucek P., Orosz M., Kokoska L. (2020). Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Scientia Hortic. 263, 109095. doi: 10.1016/j.scienta.2019.109095 DOI
Iannicelli J., Elechosa M. A., Juárez M. A., Martínez A., Bugallo V., Bandoni A. L., et al. . (2016). Effect of polyploidization in the production of essential oils in Lippia integrifolia. Ind. Crops Products 81, 20–29. doi: 10.1016/j.indcrop.2015.11.053 DOI
Kuhlgert S., Austic G., Zegarac R., Osei-Bonsu I., Hoh D., Chilvers M. I., et al. . (2016). MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R. Soc Open Sci. 3, 160592. doi: 10.1098/rsos.160592 PubMed DOI PMC
Kumar D., Singh H., Raj S., Soni V. (2020). Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochem. Biophysics Rep. 24, 100813. doi: 10.1016/j.bbrep.2020.100813 PubMed DOI PMC
Liao P.-C., Yang T.-S., Chou J.-C., Chen J., Lee S.-C., Kuo Y.-H., et al. . (2015). Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. J. Funct. Foods 19, 248–258. doi: 10.1016/j.jff.2015.09.034 DOI
Manzoor A., Ahmad T., Bashir M. A., Baig M. M. Q., Quresh A. A., Shah M. K. N., et al. . (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity.’. Folia Hortic. 30, 307–319. doi: 10.2478/fhort-2018-0026 DOI
Miraj S., Rafieian-Kopaei, Kiani S. (2017). Melissa officinalis L: A review study with an antioxidant prospective. J. Evid Based Complementary Altern. Med. 22, 385–394. doi: 10.1177/2156587216663433 PubMed DOI PMC
Moetamedipoor S. A., Jowkar A., Saharkhiz M. J., Hassani H. S. (2022). Hexaploidy induction improves morphological, physiological and phytochemical characteristics of mojito mint (Mentha × villosa). Scientia Hortic. 295, 110810. doi: 10.1016/j.scienta.2021.110810 DOI
Mosa K. A., El-Naggar M., Ramamoorthy K., Alawadhi H., Elnaggar A., Wartanian S., et al. . (2018). Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00872 PubMed DOI PMC
Münzbergová Z., Haisel D. (2019). Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth Res. 140, 289–299. doi: 10.1007/s11120-018-0604-y PubMed DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. PHYSIOLOGIA PLANTARUM 15 (3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI
Niazian M., Nalousi A. M. (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tiss Organ Cult 142, 447–469. doi: 10.1007/s11240-020-01888-1 DOI
Parsons J. L., Martin S. L., James T., Golenia G., Boudko E. A., Hepworth S. R. (2019). Polyploidization for the genetic improvement of cannabis sativa. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00476 PubMed DOI PMC
Radha, Kumar M., Puri S., Pundir A., Bangar S. P., Changan S., et al. . (2021). Evaluation of nutritional, phytochemical, and mineral composition of selected medicinal plants for therapeutic uses from cold desert of western himalaya. Plants 10, 1429. doi: 10.3390/plants10071429 PubMed DOI PMC
Rêgo M. M., Rêgo E. R., Bruckner C. H., Finger F. L., Otoni W. C. (2011). In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell Tiss Organ Cult 107, 451–459. doi: 10.1007/s11240-011-9995-6 DOI
Sadat Noori S. A., Norouzi M., Karimzadeh G., Shirkool K., Niazian M. (2017). Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tiss Organ Cult 130, 543–551. doi: 10.1007/s11240-017-1245-0 DOI
Sakhanokho H. F., Rajasekaran K., Kelley R. Y., Islam-Faridi N. (2009). Induced polyploidy in diploid ornamental ginger (Hedychium muluense R. M. Smith) using colchicine and oryzalin. horts 44, 1809–1814. doi: 10.21273/HORTSCI.44.7.1809 DOI
Salma U., Kundu S., Mandal N. (2017). Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 20, 9–19. doi: 10.1007/s12892-016-0080-1 DOI
Shakeri A., Sahebkar A., Javadi B. (2016). Melissa officinalis L. – A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 188, 204–228. doi: 10.1016/j.jep.2016.05.010 PubMed DOI
Shariat A., Sefidkon F. (2021). Tetraploid induction in savory (Satureja khuzistanica): cytological, morphological, phytochemical and physiological changes. Plant Cell Tiss Organ Cult 146, 137–148. doi: 10.1007/s11240-021-02053-y DOI
Silva G. D. S. E., Marques J. N. D. J., Linhares E. P. M., Bonora C. M., Costa É.T., Saraiva M. F. (2022). Review of anticancer activity of monoterpenoids: Geraniol, nerol, geranial and neral. Chemico-Biological Interact. 362, 109994. doi: 10.1016/j.cbi.2022.109994 PubMed DOI
Stirbet A., Govindjee (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B: Biol. 104, 236–257. doi: 10.1016/j.jphotobiol.2010.12.010 PubMed DOI
Talebi S. F., Saharkhiz M. J., Kermani M. J., Sharafi Y., Raouf Fard F. (2017). Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia 70, 184–193. doi: 10.1080/00087114.2017.1318502 DOI
Talei D., Fotokian M. H. (2020). Improving growth indices and productivity of phytochemical compounds in Lemon balm (Melissa officinalis L.) via Induced Polyploidy. bta 101, 215–226. doi: 10.5114/bta.2020.97880 DOI
Tossi V. E., Martínez Tosar L. J., Laino L. E., Iannicelli J., Regalado J. J., Escandón A. S., et al. . (2022). Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.869423 PubMed DOI PMC
Tsuda H., Kunitake H., Yamasaki M., Komatsu H., Yoshioka K. (2013). Production of intersectional hybrids between colchicine-induced tetraploid shashanbo (Vaccinium bracteatum) and highbush blueberry ‘Spartan.’. J. Amer. Soc Hortic. Sci. 138, 317–324. doi: 10.21273/JASHS.138.4.317 DOI
Ulum F. B., Hadacek F., Hörandl E. (2021). Polyploidy Improves Photosynthesis Regulation within the Ranunculus auricomus Complex (Ranunculaceae). Biology 10, 811. doi: 10.3390/biology10080811 PubMed DOI PMC
Yadegari M. (2017). Effects of zn, fe, mn and cu foliar application on essential oils and morpho-physiological traits of lemon balm (Melissa officinalis L.). J. Essential Oil Bearing Plants 20, 485–495. doi: 10.1080/0972060X.2017.1325010 DOI
Zahumenická P., Fernández E., Šedivá J., Žiarovská J., Ros-Santaella J. L., Martínez-Fernández D., et al. . (2018). Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L. Plant Cell Tiss Organ Cult 132, 317–327. doi: 10.1007/s11240-017-1331-3 DOI
Zhou J., Guo F., Fu J., Xiao Y., Wu J. (2020). In vitro polyploid induction using colchicine for Zingiber Officinale Roscoe cv. ‘Fengtou’ ginger. Plant Cell Tiss Organ Cult 142, 87–94. doi: 10.1007/s11240-020-01842-1 DOI