Polyploidization and genomic selection integration for grapevine breeding: a perspective
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38034577
PubMed Central
PMC10684766
DOI
10.3389/fpls.2023.1248978
Knihovny.cz E-zdroje
- Klíčová slova
- genomic selection, grapevine, in vitro, omics, plant breeding, polyploidization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Grapevines are economically important woody perennial crops widely cultivated for their fruits that are used for making wine, grape juice, raisins, and table grapes. However, grapevine production is constantly facing challenges due to climate change and the prevalence of pests and diseases, causing yield reduction, lower fruit quality, and financial losses. To ease the burden, continuous crop improvement to develop superior grape genotypes with desirable traits is imperative. Polyploidization has emerged as a promising tool to generate genotypes with novel genetic combinations that can confer desirable traits such as enhanced organ size, improved fruit quality, and increased resistance to both biotic and abiotic stresses. While previous studies have shown high polyploid induction rates in Vitis spp., rigorous screening of genotypes among the produced polyploids to identify those exhibiting desired traits remains a major bottleneck. In this perspective, we propose the integration of the genomic selection approach with omics data to predict genotypes with desirable traits among the vast unique individuals generated through polyploidization. This integrated approach can be a powerful tool for accelerating the breeding of grapevines to develop novel and improved grapevine varieties.
Zobrazit více v PubMed
Acanda Y., Martínez Ó., González M. V., Prado M. J., Rey M. (2015). Highly efficient in vitro tetraploid plant production via colchicine treatment using embryogenic suspension cultures in grapevine (Vitis vinifera cv. Mencía). Plant Cell Tiss Organ Cult 123, 547–555. doi: 10.1007/s11240-015-0859-3 DOI
Anacleto R., Badoni S., Parween S., Butardo V. M., Misra G., Cuevas R. P., et al. . (2019). Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnol. J. 17, 1261–1275. doi: 10.1111/pbi.13051 PubMed DOI PMC
Atanassov H., Parrilla J., Artault C., Verbeke J., Schneider T., Grossmann J., et al. . (2022). Grape ASR-silencing sways nuclear proteome, histone marks and interplay of intrinsically disordered proteins. IJMS 23, 1537. doi: 10.3390/ijms23031537 PubMed DOI PMC
Ben-Ari G., Lavi U. (2012). “Marker-assisted Selection in Plant Breeding,” in Plant Biotechnology and Agriculture (Cambridge, MA: Academic Press; ), 163–184. doi: 10.1016/B978-0-12-381466-1.00011-0 DOI
Beranová K., Bharati R., Žiarovská J., Bilčíková J., Hamouzová K., Klíma M., et al. . (2022). Morphological, cytological, and molecular comparison between diploid and induced autotetraploids of callisia fragrans (Lindl.) woodson. Agronomy 12, 2520. doi: 10.3390/agronomy12102520 DOI
Bharati R., Fernández-Cusimamani E., Gupta A., Novy P., Moses O., Severová L., et al. . (2023). Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind. Crops Products 198, 116683. doi: 10.1016/j.indcrop.2023.116683 DOI
Bhat J. A., Ali S., Salgotra R. K., Mir Z. A., Dutta S., Jadon V., et al. . (2016). Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 7. doi: 10.3389/fgene.2016.00221 PubMed DOI PMC
Brault C., Doligez A., Cunff L., Coupel-Ledru A., Simonneau T., Chiquet J., et al. . (2021). Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine. G3 Genes|Genomes|Genetics 11, jkab248. doi: 10.1093/g3journal/jkab248 PubMed DOI PMC
Brault C., Lazerges J., Doligez A., Thomas M., Ecarnot M., Roumet P., et al. . (2022). Interest of phenomic prediction as an alternative to genomic prediction in grapevine. Plant Methods 18, 108. doi: 10.1186/s13007-022-00940-9 PubMed DOI PMC
Budhlakoti N., Kushwaha A. K., Rai A., Chaturvedi K. K., Kumar A., Pradhan A. K., et al. . (2022). Genomic selection: A tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front. Genet. 13. doi: 10.3389/fgene.2022.832153 PubMed DOI PMC
Catalano C., Abbate L., Motisi A., Crucitti D., Cangelosi V., Pisciotta A., et al. . (2021). Autotetraploid Emergence via Somatic Embryogenesis in Vitis vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata. Cells 10, 1336. doi: 10.3390/cells10061336 PubMed DOI PMC
Chang Y. Y., Ji X., Zhu J. L., Hao Y. (2014). Polyploidy induction of mutation by using colchicine on tube seedlings of victoria grape. Acta Hortic. 265–270, 265–270. doi: 10.17660/ActaHortic.2014.1046.34 DOI
Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., De Los Campos G., et al. . (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 22, 961–975. doi: 10.1016/j.tplants.2017.08.011 PubMed DOI
Cuciniello R., Di Meo F., Sulli M., Demurtas O. C., Tanori M., Mancuso M., et al. . (2023). Aglianico grape seed semi-polar extract exerts anticancer effects by modulating MDM2 expression and metabolic pathways. Cells 12, 210. doi: 10.3390/cells12020210 PubMed DOI PMC
Dal Santo S., De Paoli E., Pagliarani C., Amato A., Celii M., Boccacci P., et al. . (2022). Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine. Plant Physiol. 188, 490–508. doi: 10.1093/plphys/kiab477 PubMed DOI PMC
Dinu D. G., Bianchi D., Mamasakhlisashvili L., Quarta C., Brancadoro L., Maghradze D., et al. . (2021). Effects of genotype and environmental conditions on grapevine (Vitis vinifera L.) shoot morphology. Vitis - J. Grapevine Res. 60, 85–91. doi: 10.5073/VITIS.2021.60.85-91 DOI
Endelman J. B., Carley C. A. S., Bethke P. C., Coombs J. J., Clough M. E., Da Silva W. L., et al. . (2018). Genetic variance partitioning and genome-wide prediction with allele dosage information in autotetraploid potato. Genetics 209, 77–87. doi: 10.1534/genetics.118.300685 PubMed DOI PMC
Fabres P. J., Collins C., Cavagnaro T. R., Rodríguez López C. M. (2017). A concise review on multi-omics data integration for terroir analysis in vitis vinifera. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01065 PubMed DOI PMC
Farooqi M. Q. U., Nawaz G., Wani S. H., Choudhary J. R., Rana M., Sah R. P., et al. . (2022). Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Front. Plant Sci. 13. doi: 10.3389/fpls.2022.965878 PubMed DOI PMC
Flutre T., Le Cunff L., Fodor A., Launay A., Romieu C., Berger G., et al. . (2022). A genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs. G3 Genes|Genomes|Genetics 12, jkac103. doi: 10.1093/g3journal/jkac103 PubMed DOI PMC
Gantait S., Mukherjee E. (2021). Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. J. Genet. Eng. Biotechnol. 19, 4. doi: 10.1186/s43141-020-00109-8 PubMed DOI PMC
Guo Z., Magwire M. M., Basten C. J., Xu Z., Wang D. (2016). Evaluation of the utility of gene expression and metabolic information for genomic prediction in maize. Theor. Appl. Genet. 129, 2413–2427. doi: 10.1007/s00122-016-2780-5 PubMed DOI
Han X., Li Y.-H., Yao M.-H., Yao F., Wang Z.-L., Wang H., et al. . (2023). Transcriptomics reveals the effect of short-term freezing on the signal transduction and metabolism of grapevine. IJMS 24, 3884. doi: 10.3390/ijms24043884 PubMed DOI PMC
Heslot N., Akdemir D., Sorrells M. E., Jannink J.-L. (2014). Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 127, 463–480. doi: 10.1007/s00122-013-2231-5 PubMed DOI
Homaidan Shmeit Y., Fernandez E., Novy P., Kloucek P., Orosz M., Kokoska L. (2020). Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Scientia Hortic. 263, 109095. doi: 10.1016/j.scienta.2019.109095 DOI
Hou Q., Wan X. (2021). Epigenome and epitranscriptome: potential resources for crop improvement. IJMS 22, 12912. doi: 10.3390/ijms222312912 PubMed DOI PMC
Hunt C. H., Hayes B. J., Van Eeuwijk F. A., Mace E. S., Jordan D. R. (2020). Multi-environment analysis of sorghum breeding trials using additive and dominance genomic relationships. Theor. Appl. Genet. 133, 1009–1018. doi: 10.1007/s00122-019-03526-7 PubMed DOI
Jackson S., Chen Z. J. (2010). Genomic and expression plasticity of polyploidy. Curr. Opin. Plant Biol. 13, 153–159. doi: 10.1016/j.pbi.2009.11.004 PubMed DOI PMC
Jamil I. N., Remali J., Azizan K. A., Nor Muhammad N. A., Arita M., Goh H.-H., et al. . (2020). Systematic multi-omics integration (MOI) approach in plant systems biology. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00944 PubMed DOI PMC
Jarquín D., Lemes Da Silva C., Gaynor R. C., Poland J., Fritz A., Howard R., et al. . (2017). Increasing genomic-enabled prediction accuracy by modeling genotype × Environment interactions in kansas wheat. Plant Genome 10. doi: 10.3835/plantgenome2016.12.0130 PubMed DOI
Jia H., Zuo Q., Sadeghnezhad E., Zheng T., Chen X., Dong T., et al. . (2023). HDAC19 recruits ERF4 to the MYB5a promoter and diminishes anthocyanin accumulation during grape ripening. Plant J. 113, 127–144. doi: 10.1111/tpj.16040 PubMed DOI
Jin Y., Zhao Y., Ai S., Chen X., Liu X., Wang H., et al. . (2022). Induction of polyploid Malus prunifolia and analysis of its salt tolerance. Tree Physiol. 42, tpac053. doi: 10.1093/treephys/tpac053 PubMed DOI
Jonas E., De Koning D.-J. (2013). Does genomic selection have a future in plant breeding? Trends Biotechnol. 31, 497–504. doi: 10.1016/j.tibtech.2013.06.003 PubMed DOI
Kara Z., Doğan O. (2022). Reactions of some grapevine rootstock cuttings to mutagenic applications. SJAFS 2, 238–246. doi: 10.15316/SJAFS.2022.031 DOI
Kara Z., Doğan O. (2023). Mutagenic effects of nitrogen protoxide and oryzalin on “41 B” and “Fercal” grapevine rootstocks seedlings. Breed. Sci. 73, 23003. doi: 10.1270/jsbbs.23003 PubMed DOI PMC
Kara Z., Yazar K. (2020). In vivo polyploidy induction by colchicine in grape cultivar ‘Ek ş i Kara’ ( Vitis vinifera L.). Acta Hortic., 139–146. doi: 10.17660/ActaHortic.2020.1276.20 DOI
Kara Z., Yazar K. (2021). Effects of shoot tip colchicine applications on some grape cultivars. Int. J. Agric. Environ. Food Sci. 5, 78–84. doi: 10.31015/jaefs.2021.1.11 DOI
Kara Z., Yazar K. (2022). Induction of polyploidy in grapevine (Vitis vinifera L.) seedlings by in vivo colchicineapplications. Turkish J. Agric. Forestry 46, 152–159. doi: 10.55730/1300-011X.2967 DOI
Kara Z., Yazar K., Doğan O., Şit M. M., Sabır A. (2018). Effects of colchicine treatments on some grape rootstock and grape varieties at cotyledon stage. SJAFS 32, 424–429. doi: 10.15316/SJAFS.2018.117 DOI
Kara Z., Yazar K., Doğan O., Sabir A., Özer A. (2020). Induction of ploidy in some grapevine genotypes by N 2 O treatments. Acta Hortic., 239–246. doi: 10.17660/ActaHortic.2020.1276.34 DOI
Li Z., Wang P., You C., Yu J., Zhang X., Yan F., et al. . (2020). Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytol. 226, 1738–1752. doi: 10.1111/nph.16468 PubMed DOI
Liang Z., Duan S., Sheng J., Zhu S., Ni X., Shao J., et al. . (2019). Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat. Commun. 10, 1190. doi: 10.1038/s41467-019-09135-8 PubMed DOI PMC
Lorenz A. J., Chao S., Asoro F. G., Heffner E. L., Hayashi T., Iwata H., et al. . (2011). “Genomic Selection in Plant Breeding,” in Advances in Agronomy (Cambridge, MA: Academic Press; ), 77–123. doi: 10.1016/B978-0-12-385531-2.00002-5 DOI
Mahmood U., Li X., Fan Y., Chang W., Niu Y., Li J., et al. . (2022). Multi-omics revolution to promote plant breeding efficiency. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1062952 PubMed DOI PMC
Marín D., Armengol J., Carbonell-Bejerano P., Escalona J. M., Gramaje D., Hernández-Montes E., et al. . (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Aust. J. Grape Wine Res. 27, 8–25. doi: 10.1111/ajgw.12463 DOI
Mulder H. A. (2016). Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front. Genet. 7. doi: 10.3389/fgene.2016.00178 PubMed DOI PMC
Newell M. A., Jannink J.-L. (2014). “Genomic Selection in Plant Breeding,” in Crop Breeding Methods in Molecular Biology. Eds. Fleury D., Whitford R. (New York, NY: Springer New York; ), 117–130. doi: 10.1007/978-1-4939-0446-4_10 PubMed DOI
Notsuka K., Tsuru T., Shiraishi M. (2000). Induced polyploid grapes via in vitro chromosome doubling. J. Japanese Soc. Hortic. Sci. 69 (5), 543–551. doi: 10.2503/jjshs.69.543 DOI
Olatoye M. O., Clark L. V., Wang J., Yang X., Yamada T., Sacks E. J., et al. . (2019). Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. Mol. Breed. 39, 171. doi: 10.1007/s11032-019-1081-5 DOI
Rao S., Tian Y., Xia X., Li Y., Chen J. (2020). Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Hortic. Res. 7, 40. doi: 10.1038/s41438-020-0260-1 PubMed DOI PMC
Sabra A., Netticadan T., Wijekoon C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry: X 12, 100149. doi: 10.1016/j.fochx.2021.100149 PubMed DOI PMC
Savoi S., Santiago A., Orduña L., Matus J. T. (2022). Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.937927 PubMed DOI PMC
Šedivá J., Mrázková M., Zahumenická P., Cusimamani E. F., Zahradník D. (2019). Identification of Phytophthora tolerance in the Anemone sylvestris tetraploid. Scientia Hortic. 256, 108579. doi: 10.1016/j.scienta.2019.108579 DOI
Sen M. K., Bhattacharya S., Bharati R., Hamouzova K., Soukup J. (2023). Comprehensive insights into herbicide resistance mechanisms in weeds: A synergistic integration of transcriptomic and metabolomic analyses. Front. Plant Sci. 14, 1280118. doi: 10.3389/fpls.2023.1280118 PubMed DOI PMC
Sinski I., Dal Bosco D., Pierozzi N. I., Maia J. D. G., Ritschel P. S., Quecini V. (2014). Improving in vitro induction of autopolyploidy in grapevine seedless cultivars. Euphytica 196, 299–311. doi: 10.1007/s10681-013-1034-8 DOI
Sun M., Yang Z., Liu L., Duan L. (2022). DNA methylation in plant responses and adaption to abiotic stresses. IJMS 23, 6910. doi: 10.3390/ijms23136910 PubMed DOI PMC
Tan J. W., Shinde H., Tesfamicael K., Hu Y., Fruzangohar M., Tricker P., et al. . (2023). Global transcriptome and gene co-expression network analyses reveal regulatory and non-additive effects of drought and heat stress in grapevine. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1096225 PubMed DOI PMC
The French–Italian Public Consortium for Grapevine Genome Characterization (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467. doi: 10.1038/nature06148 PubMed DOI
Töpfer R., Trapp O. (2022). A cool climate perspective on grapevine breeding: climate change and sustainability are driving forces for changing varieties in a traditional market. Theor. Appl. Genet. 135, 3947–3960. doi: 10.1007/s00122-022-04077-0 PubMed DOI PMC
Touchell D. H., Palmer I. E., Ranney T. G. (2020). In vitro ploidy manipulation for crop improvement. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00722 PubMed DOI PMC
Van Dijk A. D. J., Kootstra G., Kruijer W., De Ridder D. (2021). Machine learning in plant science and plant breeding. iScience 24, 101890. doi: 10.1016/j.isci.2020.101890 PubMed DOI PMC
Varona L., Legarra A., Toro M. A., Vitezica Z. G. (2018). Non-additive effects in genomic selection. Front. Genet. 9. doi: 10.3389/fgene.2018.00078 PubMed DOI PMC
Viana A. P., Resende M. D. V. D., Riaz S., Walker M. A. (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. (Piracicaba Braz.) 73, 142–149. doi: 10.1590/0103-9016-2014-0323 DOI
Wang Y., Xin H., Fan P., Zhang J., Liu Y., Dong Y., et al. . (2021). The genome of Shanputao ( Vitis amurensis ) provides a new insight into cold tolerance of grapevine. Plant J. 105, 1495–1506. doi: 10.1111/tpj.15127 PubMed DOI
Wang X., Xu Y., Hu Z., Xu C. (2018). Genomic selection methods for crop improvement: Current status and prospects. Crop J. 6, 330–340. doi: 10.1016/j.cj.2018.03.001 DOI
Westhues M., Schrag T. A., Heuer C., Thaller G., Utz H. F., Schipprack W., et al. . (2017). Omics-based hybrid prediction in maize. Theor. Appl. Genet. 130, 1927–1939. doi: 10.1007/s00122-017-2934-0 PubMed DOI
Xiang X., Gao Y., Cui J., Ren G., Yin C., Chang J. (2023). Methylome and transcriptome analysis of alters leaf phenotype with autotetraploid in grape. Scientia Hortic. 307, 111534. doi: 10.1016/j.scienta.2022.111534 DOI
Xie X., Agüero C. B., Wang Y., Walker M. A. (2015). In vitro induction of tetraploids in Vitis × Muscadinia hybrids. Plant Cell Tiss Organ Cult 122, 675–683. doi: 10.1007/s11240-015-0801-8 DOI
Xu Y., Crouch J. H. (2008). Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 48, 391–407. doi: 10.2135/cropsci2007.04.0191 DOI
Yang X. M., Cao Z. Y., An L. Z., Wang Y. M., Fang X. W. (2006). In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica 152, 217. doi: 10.1007/s10681-006-9203-7 DOI
Ye S., Li J., Zhang Z. (2020). Multi-omics-data-assisted genomic feature markers preselection improves the accuracy of genomic prediction. J. Anim. Sci. Biotechnol. 11, 109. doi: 10.1186/s40104-020-00515-5 PubMed DOI PMC
Zhou D.-D., Li J., Xiong R.-G., Saimaiti A., Huang S.-Y., Wu S.-X., et al. . (2022). Bioactive compounds, health benefits and food applications of grape. Foods 11, 2755. doi: 10.3390/foods11182755 PubMed DOI PMC