Comprehensive insights into herbicide resistance mechanisms in weeds: a synergistic integration of transcriptomic and metabolomic analyses
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
37885667
PubMed Central
PMC10598704
DOI
10.3389/fpls.2023.1280118
Knihovny.cz E-resources
- Keywords
- abiotic stresses, herbicide resistance, metabolomics, omics technologies, transcriptomic regulation,
- Publication type
- Journal Article MeSH
- Review MeSH
Omics techniques, including genomics, transcriptomics, proteomics, and metabolomics have smoothed the researcher's ability to generate hypotheses and discover various agronomically relevant functions and mechanisms, as well as their implications and associations. With a significant increase in the number of cases with resistance to multiple herbicide modes of action, studies on herbicide resistance are currently one of the predominant areas of research within the field of weed science. High-throughput technologies have already started revolutionizing the current molecular weed biology studies. The evolution of herbicide resistance in weeds (particularly via non-target site resistance mechanism) is a perfect example of a complex, multi-pathway integration-induced response. To date, functional genomics, including transcriptomic and metabolomic studies have been used separately in herbicide resistance research, however there is a substantial lack of integrated approach. Hence, despite the ability of omics technologies to provide significant insights into the molecular functioning of weeds, using a single omics can sometimes be misleading. This mini-review will aim to discuss the current progress of transcriptome-based and metabolome-based approaches in herbicide resistance research, along with their systematic integration.
See more in PubMed
Anjali, Kumar S., Korra T., Thakur R., Arutselvan R., Kashyap A. S., et al. . (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8, 100154. doi: 10.1016/j.stress.2023.100154 DOI
Arbona V., Manzi M., de Ollas C., Gómez-Cadenas A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 14, 4885–4911. doi: 10.3390/ijms14034885 PubMed DOI PMC
Aruna Kumara U. M., Thiruchchelvan N. (2021). “Omics technology for plant stress management,” in Microbiological Activity for Soil and Plant Health Management. Eds. Soni R., Suyal D. C., Bhargava P., Goel R. (Singapore: Springer; ), 375–412. doi: 10.1007/978-981-16-2922-8_16 DOI
Bai S., Zhao Y., Zhou Y., Wang M., Li Y., Luo X., et al. . (2020). Identification and expression of main genes involved in non-target site resistance mechanisms to fenoxaprop-p-ethyl in Beckmannia syzigachne. Pest Manage. Sci. 76, 2619–2626. doi: 10.1002/ps.5800 PubMed DOI
Boonchaisri S., Stevenson T., Dias D. A. (2020). Utilization of GC–MS untargeted metabolomics to assess the delayed response of glufosinate treatment of transgenic herbicide resistant (HR) bffalo grasses (Stenotaphrum secundatum L.). Metabolomics 16, 22. doi: 10.1007/s11306-020-1644-9 PubMed DOI
Chandrasekaran S. (2019). A protocol for the construction and curation of genome-scale integrated metabolic and regulatory network models. Methods Mol. Biol. 1927, 203–214. doi: 10.1007/978-1-4939-9142-6_14 PubMed DOI
Chen J., Huang H., Wei S., Huang Z., Wang X., Zhang C. (2017). Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. Plant J. 89, 407–415. doi: 10.1111/tpj.13395 PubMed DOI
Chen K., Peng Y., Zhang L., Wang L., Mao D., Zhao Z., et al. . (2021). Whole transcriptome analysis resulted in the identification of Chinese sprangletop (Leptochloa chinensis) genes involved in cyhalofop-butyl tolerance. BMC Genomics 22, 521. doi: 10.1186/s12864-021-07856-z PubMed DOI PMC
Concepcion J. C. T., Kaundun S. S., Morris J. A., Hutchings S.-J., Strom S. A., Lygin A. V., et al. . (2021). Resistance to a nonselective 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide via novel reduction-dehydration-glutathione conjugation in Amaranthus tuberculatus . New Phytol. 232, 2089–2105. doi: 10.1111/nph.17708 PubMed DOI PMC
Franco-Ortega S., Goldberg-Cavalleri A., Walker A., Brazier-Hicks M., Onkokesung N., Edwards R. (2021). Non-target site herbicide resistance is conferred by two distinct mechanisms in black-grass (Alopecurus myosuroides). Front. Plant Sci. 12. doi: 10.3389/fpls.2021.636652 PubMed DOI PMC
Fukushima A., Kusano M., Redestig H., Arita M., Saito K. (2009). Integrated omics approaches in plant systems biology. Curr. Opin. Chem. Biol. 13, 532–538. doi: 10.1016/j.cbpa.2009.09.022 PubMed DOI
Gaines T. A., Duke S. O., Morran S., Rigon C. A. G., Tranel P. J., Küpper A., et al. . (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem 30, 10307–10330. doi: 10.1074/jbc.REV120.013572 PubMed DOI PMC
Ghanizadeh H., Harrington K. C. (2017). Non-target site mechanisms of resistance to herbicides. Crit. Rev. Plant Sci. 36, 24–34. doi: 10.1080/07352689.2017.1316134 DOI
Goldberg-Cavalleri A., Onkokesung N., Franco-Ortega S., Edwards R. (2023). ABC transporters linked to multiple herbicide resistance in blackgrass (Alopecurus myosuroides). Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1082761 PubMed DOI PMC
Hamouzová K., Sen M. K., Bharati R., Košnarová P., Chawdhery M. R. A., Roy A., et al. . (2023). Calcium signaling in weeds under herbicide stress: An outlook. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1135845 PubMed DOI PMC
Hikosaka M., Iwahashi F., Yamato S. (2021). Metabolomic analysis of Schoenoplectus juncoides reveals common markers of acetolactate synthase inhibition among paddy weeds. Pesticide Biochem. Physiol. 174, 104827. doi: 10.1016/j.pestbp.2021.104827 PubMed DOI
Jin W., Sun J., Tang W., Yang Y., Zhang J., Lu Y., et al. . (2023). Comparative transcriptome analysis of the differential effects of florpyrauxifen-benzyl treatment on phytohormone transduction between florpyrauxifen-benzyl-resistant and -susceptible barnyard grasses (Echinochloa crus-galli (L.) P. Beauv). Agronomy 13, 702. doi: 10.3390/agronomy13030702 DOI
Joung J.-G., Corbett A. M., Fellman S. M., Tieman D. M., Klee H. J., Giovannoni J. J., et al. . (2009). Plant metGenMAP: an integrative analysis system for plant systems biology. Plant Physiol. 151, 1758–1768. doi: 10.1104/pp.109.145169 PubMed DOI PMC
Jugulam M., Shyam C. (2019). Non-target-site resistance to herbicides: recent developments. Plants 8, 417. doi: 10.3390/plants8100417 PubMed DOI PMC
Keith B. K., Burns E. E., Bothner B., Carey C. C., Mazurie A. J., Hilmer J. K., et al. . (2017). Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. Pest Manag Sci. 73, 2267–2281. doi: 10.1002/ps.4605 PubMed DOI
Kohlhase D. R., O’Rourke J. A., Owen M. D. K., Graham M. A. (2019). Using RNA-seq to characterize responses to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus). BMC Plant Biol. 19, 182. doi: 10.1186/s12870-019-1795-x PubMed DOI PMC
Košnarová P., Hamouz P., Hamouzová K., Linn A., Sen M. K., Mikulka J., et al. . (2021). Apera spica-venti in the Czech Republic develops resistance to three herbicide modes of action. Weed Res. 61, 420–429. doi: 10.1111/wre.12500 DOI
Kumar R., Bohra A., Pandey A. K., Pandey M. K., Kumar A. (2017). Metabolomics for plant improvement: status and prospects. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01302 PubMed DOI PMC
Laforest M., Soufiane B., Patterson E. L., Vargas J. J., Boggess S. L., Houston L. C., et al. . (2021). Differential expression of genes associated with non-target site resistance in Poa annua with target site resistance to acetolactate synthase inhibitors. Pest Manag Sci. 77, 4993–5000. doi: 10.1002/ps.6541 PubMed DOI PMC
Lan Y., Sun Y., Liu Z., Wei S., Huang H., Cao Y., et al. . (2022). Mechanism of resistance to pyroxsulam in multiple-resistant Alopecurus myosuroides from China. Plants 11, 1645. doi: 10.3390/plants11131645 PubMed DOI PMC
Li H., Barbour J. A., Zhu X., Wong J. W. H. (2022). Gene expression is a poor predictor of steady-state metabolite abundance in cancer cells. FASEB J. 36, e22296. doi: 10.1096/fj.202101921RR PubMed DOI
Liu W., Bai S., Zhao N., Jia S., Li W., Zhang L., et al. . (2018). Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC Plant Biol. 18, 225. doi: 10.1186/s12870-018-1451-x PubMed DOI PMC
Liu X., Ma D., Zhang Z., Wang S., Du S., Deng X., et al. . (2019). Plant lipid remodeling in response to abiotic stresses. Environ. Exp. Bot. 165, 174–184. doi: 10.1016/j.envexpbot.2019.06.005 DOI
Liu Y., Beyer A., Aebersold R. (2016). On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550. doi: 10.1016/j.cell.2016.03.014 PubMed DOI
Ma H., Lu H., Han H., Yu Q., Powles S. (2020). Metribuzin resistance via enhanced metabolism in a multiple herbicide resistant Lolium rigidum population. Pest Manage. Sci. 76, 3785–3791. doi: 10.1002/ps.5929 PubMed DOI
Manavella P. A., Godoy Herz M. A., Kornblihtt A. R., Sorenson R., Sieburth L. E., Nakaminami K., et al. . (2023). Beyond transcription: compelling open questions in plant RNA biology. Plant Cell 35, 1626–1653. doi: 10.1093/plcell/koac346 PubMed DOI PMC
Manicardi A., Milani A., Scarabel L., Mora G., Recasens J., Llenes J. M., et al. . (2023). First report of glyphosate resistance in an Amaranthus palmeri population from Europe. Weed Res. doi: 10.1111/wre.12579 DOI
Maroli A. S., Gaines T. A., Foley M. E., Duke S. O., Doğramacı M., Anderson J. V., et al. . (2018. a). Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches. Weed Sci. 66, 681–695. doi: 10.1017/wsc.2018.33 DOI
Maroli A. S., Nandula V. K., Duke S. O., Gerard P., Tharayil N. (2018. b). Comparative metabolomic analyses of ipomoea lacunosa biotypes with contrasting glyphosate tolerance captures herbicide-induced differential perturbations in cellular physiology. J. Agric. Food Chem. 66, 2027–2039. doi: 10.1021/acs.jafc.7b04722 PubMed DOI
McCauley C. L., McAdam S. A. M., Bhide K., Thimmapuram J., Banks J. A., Young B. G. (2020). Transcriptomics in Erigeron canadensis reveals rapid photosynthetic and hormonal responses to auxin herbicide application. J. Exp. Bot. 71, 3701–3709. doi: 10.1093/jxb/eraa124 PubMed DOI PMC
Mehta S., James D., Reddy M. K. (2019). “Omics technologies for abiotic stress tolerance in plants: current status and prospects,” in Recent approaches in omics for plant resilience to climate change. Ed. Wani S. H. (Cham: Springer International Publishing; ), 1–34. doi: 10.1007/978-3-030-21687-0_1 DOI
Nakabayashi R., Saito K. (2015). Integrated metabolomics for abiotic stress responses in plants. Curr. Opin. Plant Biol. 24, 10–16. doi: 10.1016/j.pbi.2015.01.003 PubMed DOI
Owen M. D. K. (2016). Diverse approaches to herbicide-resistant weed management. Weed Sci. 64, 570–584. doi: 10.1614/WS-D-15-00117.1 DOI
Pang Z., Zhou G., Ewald J., Chang L., Hacariz O., Basu N., et al. . (2022). Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761. doi: 10.1038/s41596-022-00710-w PubMed DOI
Papapanagiotou A. P., Damalas C. A., Bosmali I., Madesis P., Menexes G., Eleftherohorinos I. (2022). Multiple resistance of silky windgrass to acetolactate synthase- and acetyl-CoA synthase–inhibiting herbicides. Weed Technol. 36, 334–343. doi: 10.1017/wet.2022.24 DOI
Piasecki C., Yang Y., Benemann D. P., Kremer F. S., Galli V., Millwood R. J., et al. . (2019). Transcriptomic analysis identifies new non-target site glyphosate-resistance genes in Conyza bonariensis . Plants (Basel) 8, 157. doi: 10.3390/plants8060157 PubMed DOI PMC
Ravet K., Patterson E. L., Krähmer H., Hamouzová K., Fan L., Jasieniuk M., et al. . (2018). The power and potential of genomics in weed biology and management. Pest Manage. Sci. 74, 2216–2225. doi: 10.1002/ps.5048 PubMed DOI
Rohart F., Gautier B., Singh A., Cao K.-A. L. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PloS Comput. Biol. 13, e1005752. doi: 10.1371/journal.pcbi.1005752 PubMed DOI PMC
Sahoo J. P., Behera L., Sharma S. S., Praveena J., Nayak S. K., Samal K. C. (2020). Omics studies and systems biology perspective towards abiotic stress response in plants. Am. J. Plant Sci. 11, 2172–2194. doi: 10.4236/ajps.2020.1112152 DOI
Salas-Perez R. A., Saski C. A., Noorai R. E., Srivastava S. K., Lawton-Rauh A. L., Nichols R. L., et al. . (2018). RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PloS One 13, e0195488. doi: 10.1371/journal.pone.0195488 PubMed DOI PMC
Sandhu P. K., Leonard E., Nandula V., Tharayil N. (2023). Global metabolome of palmer amaranth (Amaranthus palmeri) populations highlights the specificity and inducibility of phytochemical responses to abiotic stress. J. Agric. Food Chem. 71, 3518–3530. doi: 10.1021/acs.jafc.2c07162 PubMed DOI
Sen M. K., Hamouzová K., Mikulka J., Bharati R., Košnarová P., Hamouz P., et al. . (2021). Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis . Pest Manage. Sci. 77, 2122–2128. doi: 10.1002/ps.6241 PubMed DOI
Stelling J., Klamt S., Bettenbrock K., Schuster S., Gilles E. D. (2002). Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193. doi: 10.1038/nature01166 PubMed DOI
Tafoya-Razo J. A., Mora-Munguía S. A., Torres-García J. R. (2022). Diversity of herbicide-resistance mechanisms of avena fatua L. @ to acetyl-coA carboxylase-inhibiting herbicides in the Bajio, Mexico. Plants 11, 1644. doi: 10.3390/plants11131644 PubMed DOI PMC
Tafoya-Razo J. A., Oregel-Zamudio E., Velázquez-Márquez S., Torres-García J. R. (2019). 10,000-times diluted doses of ACCase-inhibiting herbicides can permanently change the metabolomic fingerprint of susceptible Avena fatua L. Plants. Plants (Basel) 8, 368. doi: 10.3390/plants8100368 PubMed DOI PMC
Takano H. K., Ovejero R. F. L., Belchior G. G., Maymone G. P. L., Dayan F. E. (2020). ACCase-inhibiting herbicides: mechanism of action, resistance evolution and stewardship. Sci. Agric. (Piracicaba Braz.) 78, e20190102. doi: 10.1590/1678-992X-2019-0102 DOI
Tan S., Evans R., Singh B. (2006). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30, 195–204. doi: 10.1007/s00726-005-0254-1 PubMed DOI
Tehranchian P., Nandula V. K., Matzrafi M., Jasieniuk M. (2019). Multiple herbicide resistance in California Italian ryegrass (Lolium perenne ssp. multiflorum): characterization of ALS-inhibiting herbicide resistance. Weed Sci. 67, 273–280. doi: 10.1017/wsc.2019.1 DOI
Tétard-Jones C., Sabbadin F., Moss S., Hull R., Neve P., Edwards R. (2018). Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. Plant J. 94, 709–720. doi: 10.1111/tpj.13892 PubMed DOI PMC
Torra J., Alcántara-de la Cruz R. (2022). Molecular mechanisms of herbicide resistance in weeds. Genes 13, 2025. doi: 10.3390/genes13112025 PubMed DOI PMC
Torres-García J. R., Tafoya-Razo J. A., Velázquez-Márquez S., Tiessen A. (2018). Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase- and ALS-inhibitors. Acta Physiol. Plant 40, 119. doi: 10.1007/s11738-018-2691-y DOI
Vemuri G. N., Aristidou A. A. (2005). Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol. Mol. Biol. Rev. 69, 197–216. doi: 10.1128/MMBR.69.2.197-216.2005 PubMed DOI PMC
Wang J., Chen J., Li X., Cui H. (2021). RNA-Seq transcriptome analysis to identify candidate genes involved in non-target site-based mesosulfuron-methyl resistance in Beckmannia syzigachne. Pesticide Biochem. Physiol. 171, 104738. doi: 10.1016/j.pestbp.2020.104738 PubMed DOI
Wrzesińska-Krupa B., Szmatoła T., Praczyk T., Obrępalska-Stęplowska A. (2023). Transcriptome analysis indicates the involvement of herbicide-responsive and plant-pathogen interaction pathways in the development of resistance to ACCase inhibitors in Apera spica-venti. Pest Manag Sci. 79, 1944–1962. doi: 10.1002/ps.7370 PubMed DOI
Xu G., Li L., Zhou J., Lyu D., Zhao D., Qin S. (2023. a). Comparison of transcriptome and metabolome analysis revealed differences in cold resistant metabolic pathways in different apple cultivars under low temperature stress. Hortic. Plant J. 9, 183–198. doi: 10.1016/j.hpj.2022.09.002 DOI
Xu W., Xu X., Han R., Wang X., Wang K., Qi G., et al. . (2023. b). Integrated transcriptome and metabolome analysis reveals that flavonoids function in wheat resistance to powdery mildew. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1125194 PubMed DOI PMC
Xue J., Lu D., Wang S., Lu Z., Liu W., Wang X., et al. . (2021). Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Sci. Rep. 11, 14083. doi: 10.1038/s41598-021-93532-x PubMed DOI PMC
Yang C., Wu P., Yao X., Sheng Y., Zhang C., Lin P., et al. . (2022. b). Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Camellia oleifera Defense against Anthracnose. Int. J. Mol. Sci. 23, 536. doi: 10.3390/ijms23010536 PubMed DOI PMC
Yang J., Yu H., Cui H., Chen J., Li X. (2022. a). PsbA gene over-expression and enhanced metabolism conferring resistance to atrazine in Commelina communis. Pesticide Biochem. Physiol. 188, 105260. doi: 10.1016/j.pestbp.2022.105260 PubMed DOI
Zhang J., Li S., An H., Zhang X., Zhou B. (2022. b). Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1073332 PubMed DOI PMC
Zhang D., Li X., Bei F., Jin T., Jia S., Bu R., et al. . (2022. a). Investigating the metabolic mesosulfuron-methyl resistance in aegilops tauschii coss. By transcriptome sequencing combined with the reference genome. J. Agric. Food Chem. 70, 11429–11440. doi: 10.1021/acs.jafc.2c04529 PubMed DOI
Zhao N., Li W., Bai S., Guo W., Yuan G., Wang F., et al. . (2017). Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis . Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01391 PubMed DOI PMC
Zhao N., Yan Y., Liu W., Wang J. (2022. b). Cytochrome P450 CYP709C56 metabolizing mesosulfuron-methyl confers herbicide resistance in Alopecurus aequalis . Cell Mol. Life Sci. 79, 205. doi: 10.1007/s00018-022-04171-y PubMed DOI PMC
Zhao N., Yang J., Jiang M., Liao M., Cao H. (2022. a). Identification of essential genes involved in metabolism-based resistance mechanism to fenoxaprop-P-ethyl in Polypogon fugax. Pest Manag Sci. 78, 1164–1175. doi: 10.1002/ps.6733 PubMed DOI
Zhou F., Zhang Y., Tang W., Wang M., Gao T. (2017). Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax). BMC Genomics 18, 953. doi: 10.1186/s12864-017-4324-z PubMed DOI PMC
Zhu G., Wang H., Gao H., Liu Y., Li J., Feng Z., et al. . (2023). Multiple resistance to three modes of action of herbicides in a single italian ryegrass (Lolium multiflorum L.) population in China. Agronomy 13, 216. doi: 10.3390/agronomy13010216 DOI
Zogopoulos V. L., Saxami G., Malatras A., Angelopoulou A., Jen C.-H., Duddy W. J., et al. . (2021). Arabidopsis Coexpression Tool: a tool for gene coexpression analysis in Arabidopsis thaliana . iScience 24, 102848. doi: 10.1016/j.isci.2021.102848 PubMed DOI PMC
Zulet-Gonzalez A., Gorzolka K., Döll S., Gil-Monreal M., Royuela M., Zabalza A. (2023). Unravelling the phytotoxic effects of glyphosate on sensitive and resistant amaranthus palmeri populations by GC–MS and LC–MS metabolic profiling. Plants 12, 1345. doi: 10.3390/plants12061345 PubMed DOI PMC
Polyploidization and genomic selection integration for grapevine breeding: a perspective