Calcium signalling in weeds under herbicide stress: An outlook
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37035053
PubMed Central
PMC10080077
DOI
10.3389/fpls.2023.1135845
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, calcium signalling, food security, herbicide resistance, weeds,
- Publikační typ
- časopisecké články MeSH
The continuous use of herbicides for controlling weeds has led to the evolution of resistance to all major herbicidal modes of action globally. Every year, new cases of herbicide resistance are reported. Resistance is still in progress in many species, which must be stopped before it becomes a worldwide concern. Several herbicides are known to cause stressful conditions that resemble plant abiotic stresses. Variation in intracellular calcium (Ca2+) concentration is a primary event in a wide range of biological processes in plants, including adaptation to various biotic and abiotic stresses. Ca2+ acts as a secondary messenger, connecting various environmental stimuli to different biological processes, especially during stress rejoindering in plants. Even though many studies involving Ca2+ signalling in plants have been published, there have been no studies on the roles of Ca2+ signalling in herbicide stress response. Hence, this mini-review will highlight the possible sensing and molecular communication via Ca2+ signals in weeds under herbicide stress. It will also discuss some critical points regarding integrating the sensing mechanisms of multiple stress conditions and subsequent molecular communication. These signalling responses must be addressed in the future, enabling researchers to discover new herbicidal targets.
Zobrazit více v PubMed
Ahmad P., Alyemeni M. N., Abass Ahanger M., Wijaya L., Alam P., Kumar A., et al. . (2018). Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. J. Plant Interact. 13, 151–162. doi: 10.1080/17429145.2018.1441452 DOI
Alberto D., Serra A.-A., Sulmon C., Gouesbet G., Couée I. (2016). Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges. Sci. Total Environ. 569–570, 1618–1628. doi: 10.1016/j.scitotenv.2016.06.064 PubMed DOI
Aldon D., Mbengue M., Mazars C., Galaud J.-P. (2018). Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19, 665. doi: 10.3390/ijms19030665 PubMed DOI PMC
Asaeda T., Rahman M., Vamsi-Krishna L., Schoelynck J., Rashid M. H. (2022). Measurement of foliar H2O2 concentration can be an indicator of riparian vegetation management. Sci. Rep. 12, 13803. doi: 10.1038/s41598-022-17658-2 PubMed DOI PMC
Atif R. M., Shahid L., Waqas M., Ali B., Rashid M. A. R., Azeem F., et al. . (2019). Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. Int. J. Mol. Sci. 20, 5298. doi: 10.3390/ijms20215298 PubMed DOI PMC
Batistič O., Kudla J. (2009). Plant calcineurin b-like proteins and their interacting protein kinases. Biochim. Biophys. Acta (BBA) - Mol. Cell Res. 1793, 985–992. doi: 10.1016/j.bbamcr.2008.10.006 PubMed DOI
Behera S., Long Y., Schmitz-Thom I., Wang X. P., Zhang C., Li H., et al. . (2017). Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to k+ deficiency. New Phytol. 213 (2), 739–750. doi: 10.1111/nph.14145 PubMed DOI
Bhar A., Chakraborty A., Roy A. (2022). Plant responses to biotic stress: Old memories matter. Plants 11, 84. doi: 10.3390/plants11010084 PubMed DOI PMC
Bickerton P. D., Pittman J. K. (2012). Calcium signalling in plants. eLS. doi: 10.1002/9780470015902.a0023722 DOI
Borjigin C., Schilling R. K., Jewell N., Brien C., Sanchez-Ferrero J. C., Eckermann P. J., et al. . (2021). Identifying the genetic control of salinity tolerance in the bread wheat landrace mocho de espiga branca. Funct. Plant Biol. 48, 1148–1160. doi: 10.1071/FP21140 PubMed DOI
Bose J., Pottosin I. I., Shabala S. S., Palmgren M. G., Shabala S. (2011). Calcium efflux systems in stress signaling and adaptation in plants. Front. Plant Sci. 2. doi: 10.3389/fpls.2011.00085 PubMed DOI PMC
Brini F., Hanin M., Mezghani I., Berkowitz G. A., Masmoudi K. (2007). Overexpression of wheat Na+/H+ antiporter TNHX1 and h+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 58, 301–308. doi: 10.1093/jxb/erl251 PubMed DOI
Bruce T. J. A., Matthes M. C., Napier J. A., Pickett J. A. (2007). Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 173, 603–608. doi: 10.1016/j.plantsci.2007.09.002 DOI
Bush D. S., Jones R. L. (1990). Measuring intracellular Ca2+ levels in plant cells using the fluorescent probes, indo-1 and fura-2: progress and prospects. Plant Physiol. 93 (3), 841–845. doi: 10.1104/pp.93.3.841 PubMed DOI PMC
Caverzan A., Piasecki C., Chavarria G., Stewart C. N., Vargas L. (2019). Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 20, 1086. doi: 10.3390/ijms20051086 PubMed DOI PMC
Century K., Reuber T. L., Ratcliffe O. J. (2008). Regulating the regulators: The future prospects for transcription-Factor-Based agricultural biotechnology products. Plant Physiol. 147, 20–29. doi: 10.1104/pp.108.117887 PubMed DOI PMC
Chaudhary S., Khokhar W., Jabre I., Reddy A. S., Byrne L. J., Wilson C. M., et al. . (2019). Alternative splicing and protein diversity: Plants versus animals. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00708 PubMed DOI PMC
Chaudhry S., Sidhu G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 41, 1–31. doi: 10.1007/s00299-021-02759-5 PubMed DOI
Cui Y., Lu S., Li Z., Cheng J., Hu P., Zhu T., et al. . (2020). CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol. 183, 1794–1808. doi: 10.1104/pp.20.00591 PubMed DOI PMC
Daoud R., Mies G., Smialowska A., Olah L., Hossmann K. A., Stamm S. (2002). Ischemia induces a translocation of the splicing factor tra2-β1 and changes alternative splicing patterns in the brain. J. Neurosci. 22 (14), 5889–5899. doi: 10.1523/JNEUROSCI.22-14-05889.2002 PubMed DOI PMC
Délye C., Jasieniuk M., Le Corre V. (2013). Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658. doi: 10.1016/j.tig.2013.06.001 PubMed DOI
Dong H., Wu C., Luo C., Wei M., Qu S., Wang S. (2020). Overexpression of MdCPK1a gene, a calcium dependent protein kinase in apple, increase tobacco cold tolerance via scavenging ROS accumulation. PloS One 15, e0242139. doi: 10.1371/journal.pone.0242139 PubMed DOI PMC
Duo H., Yu H., Sun E., Zhao D., Zuo C. (2022). RNA Sequencing reveals that cell wall, Ca2+, hypersensitive response and salicylic acid signals are involved in pear suspension cells responses to Valsa pyri infection. Scientia Hortic. 305, 111422. doi: 10.1016/j.scienta.2022.111422 DOI
Eichstädt B., Lederer S., Trempel F., Jiang X., Guerra T., Waadt R., et al. . (2021). Plant immune memory in systemic tissue does not involve changes in rapid calcium signaling. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.798230 PubMed DOI PMC
Fang J., Zhang Y., Liu T., Yan B., Li J., Dong L. (2019). Target-site and metabolic resistance mechanisms to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) p. beauv). J. Agric. Food Chem. 67, 8085–8095. doi: 10.1021/acs.jafc.9b01641 PubMed DOI
Franco-Ortega S., Goldberg-Cavalleri A., Walker A., Brazier-Hicks M., Onkokesung N., Edwards R. (2021). Non-target site herbicide resistance is conferred by two distinct mechanisms in black-grass (Alopecurus myosuroides). Front. Plant Sci. 12. doi: 10.3389/fpls.2021.636652 PubMed DOI PMC
Fu X., Chang J., An L., Zhang M., Xu S., Chen T., et al. . (2006). Association of the cold-hardiness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. Environ. Exp. Bot. 55, 282–293. doi: 10.1016/j.envexpbot.2004.11.009 DOI
Furuichi N. (2020). Effector signaling in hypersensitive response of plant microbe interaction: Single-Molecule-Signaling of suppressor from Phytophthora infestans and host selective toxin of Alternaria solani on Ca2+-dependent protein-kinase (CDPK). Insights Biotechnol. Bioinforma 1 (1), 1003.
Gaines T. A., Duke S. O., Morran S., Rigon C. A. G., Tranel P. J., Küpper A., et al. . (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295, jbc.REV120.013572. doi: 10.1074/jbc.REV120.013572 PubMed DOI PMC
Gao Q., Wang C., Xi Y., Shao Q., Li L., Luan S. (2022). A receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature 607, 534–539. doi: 10.1038/s41586-022-04923-7 PubMed DOI PMC
Gao Q., Xiong T., Li X., Chen W., Zhu X. (2019). Calcium and calcium sensors in fruit development and ripening. Scientia Hortic. 253, 412–421. doi: 10.1016/j.scienta.2019.04.069 DOI
Ghosh S., Bheri M., Bisht D., Pandey G. K. (2022). Calcium signaling and transport machinery: Potential for development of stress tolerance in plants. Curr. Plant Biol. 29, 100235. doi: 10.1016/j.cpb.2022.100235 DOI
Goel A., Taj G., Pandey D., Gupta S., Kumar A. (2011). Genome-wide comparative in silico analysis of calcium transporters of rice and sorghum. Genomics Proteomics Bioinf. 9, 138–150. doi: 10.1016/S1672-0229(11)60017-X PubMed DOI PMC
Granatiero V., Patron M., Tosatto A., Merli G., Rizzuto R. (2014). The use of aequorin and its variants for Ca2+ measurements. Cold Spring Harbor Protoc. 2014 (1), pdb–top066118. doi: 10.1101/pdb.top066118 PubMed DOI
Gu S., Abid M., Bai D., Chen C., Sun L., Qi X., et al. . (2023). Transcriptome-wide identification and functional characterization of CIPK gene family members in Actinidia valvata under salt stress. Int. J. Mol. Sci. 24 (1), 805. doi: 10.3390/ijms24010805 PubMed DOI PMC
Hashimoto K., Kudla J. (2011). Calcium decoding mechanisms in plants. Biochimie 93, 2054–2059. doi: 10.1016/j.biochi.2011.05.019 PubMed DOI
Heyer M., Scholz S. S., Reichelt M., Kunert G., Oelmüller R., Mithöfer A. (2022). The Ca2+ sensor proteins CML37 and CML42 antagonistically regulate plant stress responses by altering phytohormone signals. Plant Mol. Biol. 109, 611–625. doi: 10.1007/s11103-021-01184-2 PubMed DOI PMC
Himanen S. V., Sistonen L. (2019). New insights into transcriptional reprogramming during cellular stress. J. Cell Sci. 132, jcs238402. doi: 10.1242/jcs.238402 PubMed DOI
Hirayama T., Shinozaki K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61, 1041–1052. doi: 10.1111/j.1365-313X.2010.04124.x PubMed DOI
Hong-Bo S., Li-Ye C., Ming-An S., Shi-Qing L., Ji-Cheng Y. (2008). Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnol. Adv. 26, 503–510. doi: 10.1016/j.biotechadv.2008.04.004 PubMed DOI
Huda K., Md K., Mst S. A., Tuteja R., Tuteja N. (2013). Global calcium transducer p-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling. J. Exp. Bot. 64, 3099–3109. doi: 10.1093/jxb/ert182 PubMed DOI
Iwakami S., Shimono Y., Manabe Y., Endo M., Shibaike H., Uchino A., et al. . (2017). Copy number variation in acetolactate synthase genes of thifensulfuron-methyl resistant alopecurus aequalis (shortawn foxtail) accessions in Japan. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00254 PubMed DOI PMC
Jaffe L. F. (1980). Calcium explosions as triggers of development. Ann. New York Acad. Sci. 339 (1), 86–101. doi: 10.1111/j.1749-6632.1980.tb15971.x PubMed DOI
Jia B., Li Y., Sun X., Sun M. (2022). Structure, function, and applications of soybean calcium transporters. Int. J. Mol. Sci. 23, 14220. doi: 10.3390/ijms232214220 PubMed DOI PMC
Kanchiswamy C. N., Malnoy M., Occhipinti A., Maffei M. E. (2014). Calcium imaging perspectives in plants. Int. J. Mol. Sci. 15 (3), 3842–3859. doi: 10.3390/ijms15033842 PubMed DOI PMC
Kang H. K., Nam K. H. (2016). Reverse function of ROS-induced CBL10 during salt and drought stress responses. Plant Sci. 243, 49–55. doi: 10.1016/j.plantsci.2015.11.006 PubMed DOI
Khare T., Srivastav A., Kumar V. (2020). “Calcium/calmodulin activated protein kinases in stress signaling in plants,” in Protein Kinases and Stress Signaling in Plants. Ed. G. K. Pandey (Chichester, UK: John Wiley & Sons, Ltd; ), 266–280. doi: 10.1002/9781119541578.ch11 DOI
Kudla J., Becker D., Grill E., Hedrich R., Hippler M., Kummer U., et al. . (2018). Advances and current challenges in calcium signaling. New Phytol. 218, 414–431. doi: 10.1111/nph.14966 PubMed DOI
Li X.-D., Gao Y.-Q., Wu W.-H., Chen L.-M., Wang Y. (2022). Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol. J. 20, 143–157. doi: 10.1111/pbi.13701 PubMed DOI PMC
Lian H., Qin C., Zhao Q., Begum N., Zhang S. (2022). Exogenous calcium promotes growth of adzuki bean (Vigna angularis willd.) seedlings under nitrogen limitation through the regulation of nitrogen metabolism. Plant Physiol. Biochem. 190, 90–100. doi: 10.1016/j.plaphy.2022.08.028 PubMed DOI
Liu Q., Ding Y., Shi Y., Ma L., Wang Y., Song C., et al. . (2021). The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J. 40, e104559. doi: 10.15252/embj.2020104559 PubMed DOI PMC
Liu Q., Xu L., Li Y., Xu W., Vetukuri R. R., Xu X. (2023). Overexpression of an autophagy-related gene DiATG3 from Davidia involucrata improves plant thermotolerance by enhancing the accumulation of polyamines and regulating genes in calcium and MAPK signaling pathways. Environ. Exp. Bot. 105235. doi: 10.1016/j.envexpbot.2023.105235 DOI
Ma F. F., Lu R., Liu H. Y., Shi B., Zhang J. H., Tan M. P., et al. . (2012). Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J. Exp. Bot. 63, 4835–4847. doi: 10.1093/jxb/ers161 PubMed DOI PMC
Ma L., Ye J., Yang Y., Lin H., Yue L., Luo J., et al. . (2019). The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev. Cell 48, 697–709.e5. doi: 10.1016/j.devcel.2019.02.010 PubMed DOI
Mandadi K. K., Petrillo E., Dubrovina A. S., Kiselev K. V. (2022). Regulation of alternative splicing in plant stress responses. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1120961 PubMed DOI PMC
Manishankar P., Wang N., Köster P., Alatar A. A., Kudla J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. J. Exp. Bot. 69, 4215–4226. doi: 10.1093/jxb/ery201 PubMed DOI
Marcec M. J., Gilroy S., Poovaiah B. W., Tanaka K. (2019). Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 283, 343–354. doi: 10.1016/j.plantsci.2019.03.004 PubMed DOI
Mithöfer A., Mazars C. (2002). Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. Biol. Procedures Online 4, 105–118. doi: 10.1251/bpo40 PubMed DOI PMC
Mohanta T. K., Mohanta N., Mohanta Y. K., Parida P., Bae H. (2015). Genome-wide identification of calcineurin b-like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events. BMC Plant Biol. 15, 189. doi: 10.1186/s12870-015-0543-0 PubMed DOI PMC
Mori K., Renhu N., Naito M., Nakamura A., Shiba H., Yamamoto T., et al. . (2018). Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in arabidopsis. Sci. Rep. 8 (1), 550. doi: 10.1038/s41598-017-17483-y PubMed DOI PMC
Moscatiello R., Sello S., Ruocco M., Barbulova A., Cortese E., Nigris S., et al. . (2018). The hydrophobin HYTLO1 secreted by the biocontrol fungus trichoderma longibrachiatum triggers a NAADP-mediated calcium signalling pathway in Lotus japonicus . Int. J. Mol. Sci. 19, 2596. doi: 10.3390/ijms19092596 PubMed DOI PMC
Pan L., Guo Q., Wang J., Shi L., Yang X., Zhou Y., et al. . (2022). CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli . J. Hazardous Materials 428, 128225. doi: 10.1016/j.jhazmat.2022.128225 PubMed DOI
Pathak J., Ahmed H., Kumari N., Pandey A., Rajneesh, Sinha R. P. (2020). “Role of calcium and potassium in amelioration of environmental stress in plant,” in Protective chemical agents in the amelioration of plant abiotic stress (Chichester, UK: John Wiley & Sons, Ltd; ), 535–562. doi: 10.1002/9781119552154.ch27 DOI
Rahman A., Mostofa M. G., Alam M., Nahar K., Hasanuzzaman M., Fujita M. (2015). Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. BioMed. Res. Int. 2015. doi: 10.1155/2015/340812 PubMed DOI PMC
Razanau A., Xie J. (2013). Emerging mechanisms and consequences of calcium regulation of alternative splicing in neurons and endocrine cells. Cell. Mol. Life Sci. 70, 4527–4536. doi: 10.1007/s00018-013-1390-5 PubMed DOI PMC
Reddy A. S. N., Ali G. S., Celesnik H., Day I. S. (2011). Coping with stresses: Roles of calcium- and Calcium/Calmodulin-regulated gene expression. Plant Cell 23, 2010–2032. doi: 10.1105/tpc.111.084988 PubMed DOI PMC
Riveras E., Alvarez J. M., Vidal E. A., Oses C., Vega A., Gutiérrez R. A. (2015). The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis . Plant Physiol. 169 (2), 1397–1404. doi: 10.1104/pp.15.00961 PubMed DOI PMC
Roy P. R., Tahjib-Ul-Arif M., Polash M. A. S., Hossen M. Z., Hossain M. A. (2019). Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa l.). Physiol. Mol. Biol. Plants 25, 611–624. doi: 10.1007/s12298-019-00654-8 PubMed DOI PMC
Schulz P., Piepenburg K., Lintermann R., Herde M., Schöttler M. A., Schmidt L. K., et al. . (2021). Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. Plant Biotechnol. J. 19, 74–86. doi: 10.1111/pbi.13441 PubMed DOI PMC
Shi S., Li S., Asim M., Mao J., Xu D., Ullah Z., et al. . (2018). The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. Int. J. Mol. Sci. 19, 1900. doi: 10.3390/ijms19071900 PubMed DOI PMC
Shih H.-W., Miller N. D., Dai C., Spalding E. P., Monshausen G. B. (2014). The receptor-like kinase FERONIA is required for mechanical signal transduction in arabidopsis seedlings. Curr. Biol. 24, 1887–1892. doi: 10.1016/j.cub.2014.06.064 PubMed DOI
Singh A., Mehta S., Yadav S., Nagar G., Ghosh R., Roy A., et al. . (2022). How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int. J. Mol. Sci. 23, 1995. doi: 10.3390/ijms23041995 PubMed DOI PMC
Song W. Y., Zhang Z. B., Shao H. B., Guo X. L., Cao H. X., Zhao H. B., et al. . (2008). Relationship between calcium decoding elements and plant abiotic-stress resistance. Int. J. Biol. Sci. 4 (2), 116–125. doi: 10.7150/ijbs.4.116 PubMed DOI PMC
Tai F., Yuan Z., Li S. P., Wang Q., Liu F., Wang W. (2016). ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. Plant Cell Tiss. Org. Cul. 124, 459–469. doi: 10.1007/s11240-015-0906-0 DOI
Tan W., Meng Q., Brestic M., Olsovska K., Yang X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol. 168, 2063–2071. doi: 10.1016/j.jplph.2011.06.009 PubMed DOI
Tang R. J., Zhao F. G., Yang Y., Wang C., Li K., Kleist T. J., et al. . (2020). A calcium signalling network activates vacuolar k+ remobilization to enable plant adaptation to low-K environments. Nat. Plants 6 (4), 384–393. doi: 10.1038/s41477-020-0621-7 PubMed DOI
Thor K., Jiang S., Michard E., George J., Scherzer S., Huang S., et al. . (2020). The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569–573. doi: 10.1038/s41586-020-2702-1 PubMed DOI PMC
Tognacca R. S., Rodríguez F. S., Aballay F. E., Cartagena C. M., Servi L., Petrillo E. (2022). Alternative splicing in plants: Current knowledge and future directions for assessing the biological relevance of splice variants. J. Exp. Botany. doi: 10.1093/jxb/erac431 PubMed DOI
Torra J., Alcántara-de la Cruz R. (2022). Molecular mechanisms of herbicide resistance in weeds. Genes 13, 2025. doi: 10.3390/genes13112025 PubMed DOI PMC
Tuteja N., Mahajan S. (2007). Calcium signaling network in plants: An overview. Plant Signal Behav. 2, 79–85. doi: 10.4161/psb.2.2.4176 PubMed DOI PMC
Wang W.-H., He E.-M., Guo Y., Tong Q.-X., Zheng H.-L. (2016). Chloroplast calcium and ROS signaling networks potentially facilitate the primed state for stomatal closure under multiple stresses. Environ. Exp. Bot. 122, 85–93. doi: 10.1016/j.envexpbot.2015.09.008 DOI
Wang P., Li Z. W., Wei J. S., Zhao Z. L., Sun D. Y., Cui S. J. (2012). A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in arabidopsis. J. Biol. Chem. 287, 44062–44070. doi: 10.1074/jbc.M112.351643 PubMed DOI PMC
Wang J., Song J., Wu X.-B., Deng Q.-Q., Zhu Z.-Y., Ren M.-J., et al. . (2021). Seed priming with calcium chloride enhances wheat resistance against wheat aphid schizaphis graminum rondani. Pest Manage. Sci. 77, 4709–4718. doi: 10.1002/ps.6513 PubMed DOI
Wang Y., Dai X., Xu G., Dai Z., Chen P., Zhang T., et al. . (2021). The Ca2+-CaM signaling pathway mediates potassium uptake by regulating reactive oxygen species homeostasis in tobacco roots under low-K+ stress. Front. Plant Sci. 12, 658609 PubMed PMC
Wang Y.-J., Yu J.-N., Chen T., Zhang Z.-G., Hao Y.-J., Zhang J.-S., et al. . (2005). Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J. Exp. Bot. 56, 3051–3060. doi: 10.1093/jxb/eri302 PubMed DOI
Weinl S., Kudla J. (2009). The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol. 184, 517–528. doi: 10.1111/j.1469-8137.2009.02938.x PubMed DOI
Xie Q., Yang Y., Wang Y., Pan C., Hong S., Wu Z., et al. . (2022). The calcium sensor CBL10 negatively regulates plasma membrane h+-ATPase activity and alkaline stress response in arabidopsis. Environ. Exp. Bot. 194, 104752. doi: 10.1016/j.envexpbot.2021.104752 DOI
Xu T., Niu J., Jiang Z. (2022). Sensing mechanisms: Calcium signaling mediated abiotic stress in plants. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.925863 PubMed DOI PMC
Xu H., Zhang W., Zhang T., Li J., Wu X., Dong L. (2014). Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese foxtail (Alopecurus japonicus). PloS One 9 (12), e114712. doi: 10.1371/journal.pone.0114712 PubMed DOI PMC
Yadav M., Pandey J., Chakraborty A., Hassan M. I., Kundu J. K., Roy A., et al. . (2022). A comprehensive analysis of calmodulin-like proteins of glycine max indicates their role in calcium signaling and plant defense against insect attack. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.817950 PubMed DOI PMC
Yakimowski S. B., Teitel Z., Caruso C. M. (2021). Defence by duplication: The relation between phenotypic glyphosate resistance and EPSPS gene copy number variation in Amaranthus palmeri . Mol. Ecol. 30 (21), 5328–5342. doi: 10.1111/mec.16231 PubMed DOI
Yang Z., Wang C., Xue Y., Liu X., Chen S., Song C., et al. . (2019). Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat. Commun. 10, 1199. doi: 10.1038/s41467-019-09181-2 PubMed DOI PMC
Yuan P., Yang T., Poovaiah B. W. (2018). Calcium signaling-mediated plant response to cold stress. Int. J. Mol. Sci. 19, 3896. doi: 10.3390/ijms19123896 PubMed DOI PMC
Yuan F., Yang H., Xue Y., Kong D., Ye R., Li C., et al. . (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in arabidopsis. Nature 514 (7522), 367–371. doi: 10.1038/nature13593 PubMed DOI
Zhang Y., Gao H., Fang J., Wang H., Chen J., Li J., et al. . (2022). Up-regulation of bZIP88 transcription factor is involved in resistance to three different herbicides in both Echinochloa crus-galli and E. glabrescens . J. Exp. Bot. 73, 6916–6930. doi: 10.1093/jxb/erac319 PubMed DOI
Zhang H., Zhu J., Gong Z., Zhu J.-K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119. doi: 10.1038/s41576-021-00413-0 PubMed DOI
Zhao X., Bai X., Jiang C., Li Z. (2019). Phosphoproteomic analysis of two contrasting maize inbred lines provides insights into the mechanism of salt-stress tolerance. Int. J. Mol. Sci. 20, 1886. doi: 10.3390/ijms20081886 PubMed DOI PMC
Zhao N., Li W., Bai S., Guo W., Yuan G., Wang F., et al. . (2017). Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis . Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01391 PubMed DOI PMC
Zou J. J., Li X. D., Ratnasekera D., Wang C., Liu W. X., Song L. F., et al. . (2015). Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27 (5), 1445–1460. doi: 10.1105/tpc.15.00144 PubMed DOI PMC