Plant Responses to Biotic Stress: Old Memories Matter

. 2021 Dec 28 ; 11 (1) : . [epub] 20211228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009087

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000803 EVA 4.0," No. CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE

Plants are fascinating organisms present in most ecosystems and a model system for studying different facets of ecological interactions on Earth. In the environment, plants constantly encounter a multitude of abiotic and biotic stresses. The zero-avoidance phenomena make them more resilient to such environmental odds. Plants combat biotic stress or pathogenic ingression through a complex orchestration of intracellular signalling cascades. The plant-microbe interaction primarily relies on acquired immune response due to the absence of any specialised immunogenic cells for adaptive immune response. The generation of immune memory is mainly carried out by T cells as part of the humoral immune response in animals. Recently, prodigious advancements in our understanding of epigenetic regulations in plants invoke the "plant memory" theory afresh. Current innovations in cutting-edge genomic tools have revealed stress-associated genomic alterations and strengthened the idea of transgenerational memory in plants. In plants, stress signalling events are transferred as genomic imprints in successive generations, even without any stress. Such immunogenic priming of plants against biotic stresses is crucial for their eco-evolutionary success. However, there is limited literature capturing the current knowledge of the transgenerational memory of plants boosting biotic stress responses. In this context, the present review focuses on the general concept of memory in plants, recent advancements in this field and comprehensive implications in biotic stress tolerance with future perspectives.

Zobrazit více v PubMed

Walkup L.K. Junk DNA: Evolutionary discards or God’s tools. Tech. J. 2000;14:18–30.

Kornberg R.D. Eukaryotic transcriptional control. Trends Biochem. Sci. 1999;24:M46–M49. doi: 10.1016/S0968-0004(99)01489-9. PubMed DOI

Shanker A.K., Bhanu D., Maheswari M. Epigenetics and transgenerational memory in plants under heat stress. Plant Physiol. Rep. 2020;25:583–593. doi: 10.1007/s40502-020-00557-x. DOI

Espinas N.A., Saze H., Saijo Y. Epigenetic control of defense signaling and priming in plants. Front. Plant Sci. 2016;7:1201. doi: 10.3389/fpls.2016.01201. PubMed DOI PMC

Hilker M., Schmülling T. Stress priming, memory, and signalling in plants. Plant Cell Environ. 2019;42:753–761. doi: 10.1111/pce.13526. PubMed DOI

Chester K.S. The problem of acquired physiological immunity in plants. Q. Rev. Biol. 1933;8:275–324. doi: 10.1086/394440. DOI

Reimer-Michalski E.-M., Conrath U. Seminars in Immunology. Academic Press; Cambridge, MA, USA: 2016. Innate immune memory in plants; pp. 319–327. PubMed

Galviz Y.C., Ribeiro R.V., Souza G.M. Yes, plants do have memory. Theor. Exp. Plant Physiol. 2020;32:195–202. doi: 10.1007/s40626-020-00181-y. DOI

Mladenov V., Fotopoulos V., Kaiserli E., Karalija E., Maury S., Baranek M., Segal N., Testillano P.S., Vassileva V., Pinto G. Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops. Int. J. Mol. Sci. 2021;22:7118. doi: 10.3390/ijms22137118. PubMed DOI PMC

Bhar A., Chatterjee M., Gupta S., Das S. Salicylic acid regulates systemic defense signaling in chickpea during Fusarium oxysporum f. sp. ciceri race 1 infection. Plant Mol. Biol. Rep. 2018;36:162–175. doi: 10.1007/s11105-018-1067-1. DOI

Gupta S., Bhar A., Chatterjee M., Das S. Fusarium oxysporum f. sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.) PLoS ONE. 2013;8:e73163. doi: 10.1371/journal.pone.0073163. PubMed DOI PMC

Zander M., Lewsey M.G., Clark N.M., Yin L., Bartlett A., Guzmán J.P.S., Hann E., Langford A.E., Jow B., Wise A. Integrated multi-omics framework of the plant response to jasmonic acid. Nat. Plants. 2020;6:290–302. doi: 10.1038/s41477-020-0605-7. PubMed DOI PMC

Aerts N., Pereira Mendes M., Van Wees S.C. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021;105:489–504. doi: 10.1111/tpj.15124. PubMed DOI PMC

Tuteja N., Mahajan S. Calcium signaling network in plants: An overview. Plant Signal. Behav. 2007;2:79–85. doi: 10.4161/psb.2.2.4176. PubMed DOI PMC

Adams J.P., Sweatt J.D. Molecular psychology: Roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 2002;42:135–163. doi: 10.1146/annurev.pharmtox.42.082701.145401. PubMed DOI

Rasmussen M.W., Roux M., Petersen M., Mundy J. MAP kinase cascades in Arabidopsis innate immunity. Front. Plant Sci. 2012;3:169. doi: 10.3389/fpls.2012.00169. PubMed DOI PMC

Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI

Bigeard J., Colcombet J., Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI) Mol. Plant. 2015;8:521–539. doi: 10.1016/j.molp.2014.12.022. PubMed DOI

Bhar A., Gupta S., Chatterjee M., Das S. Redox Regulatory Networks in Response to Biotic Stress in Plants: A New Insight Through Chickpea-Fusarium Interplay. In: Pandey G.K., editor. Mechanism of Plant Hormone Signaling under Stress. Volume 2. John Wiley & Sons; Hoboken, NJ, USA: 2017. pp. 23–43.

Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019;10:800. doi: 10.3389/fpls.2019.00800. PubMed DOI PMC

Tsuge T., Harimoto Y., Akimitsu K., Ohtani K., Kodama M., Akagi Y., Egusa M., Yamamoto M., Otani H. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 2013;37:44–66. doi: 10.1111/j.1574-6976.2012.00350.x. PubMed DOI

Bacon C., Porter J., Norred W., Leslie J. Production of fusaric acid by Fusarium species. Appl. Environ. Microbiol. 1996;62:4039–4043. doi: 10.1128/aem.62.11.4039-4043.1996. PubMed DOI PMC

Li C., Zuo C., Deng G., Kuang R., Yang Q., Hu C., Sheng O., Zhang S., Ma L., Wei Y. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS ONE. 2013;8:e70226. doi: 10.1371/journal.pone.0070226. PubMed DOI PMC

Thomma B.P., Nürnberger T., Joosten M.H. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell. 2011;23:4–15. doi: 10.1105/tpc.110.082602. PubMed DOI PMC

Kaur B., Bhatia D., Mavi G. Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J. Genet. 2021;100:50. doi: 10.1007/s12041-021-01300-7. PubMed DOI

Song X., Sun P., Yuan J., Gong K., Li N., Meng F., Zhang Z., Li X., Hu J., Wang J. The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in apiales. Plant Biotechnol. J. 2021;19:731–744. doi: 10.1111/pbi.13499. PubMed DOI PMC

Kahlon P.S., Stam R. Polymorphisms in plants to restrict losses to pathogens: From gene family expansions to complex network evolution. Curr. Opin. Plant Biol. 2021;62:102040. doi: 10.1016/j.pbi.2021.102040. PubMed DOI

Kenrick P., Crane P.R. The origin and early evolution of plants on land. Nature. 1997;389:33–39. doi: 10.1038/37918. DOI

Fürst-Jansen J.M., de Vries S., de Vries J. Evo-physio: On stress responses and the earliest land plants. J. Exp. Bot. 2020;71:3254–3269. doi: 10.1093/jxb/eraa007. PubMed DOI PMC

Lyu D., Msimbira L.A., Nazari M., Antar M., Pagé A., Shah A., Monjezi N., Zajonc J., Tanney C.A., Backer R. The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms. 2021;9:1036. doi: 10.3390/microorganisms9051036. PubMed DOI PMC

Song W.-Y., Wang G.-L., Chen L.-L., Kim H.-S., Pi L.-Y., Holsten T., Gardner J., Wang B., Zhai W.-X., Zhu L.-H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995;270:1804–1806. doi: 10.1126/science.270.5243.1804. PubMed DOI

Mubassir M., Naser M.A., Abdul-Wahab M.F., Jawad T., Alvy R.I., Hamdan S. Comprehensive in silico modeling of the rice plant PRR Xa21 and its interaction with RaxX21-sY and OsSERK2. RSC Adv. 2020;10:15800–15814. doi: 10.1039/D0RA01396J. PubMed DOI PMC

Peng H., Chen Z., Fang Z., Zhou J., Xia Z., Gao L., Chen L., Li L., Li T., Zhai W. Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Sci. Rep. 2015;5:12165. doi: 10.1038/srep12165. PubMed DOI PMC

Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J.D., Felix G., Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature. 2007;448:497–500. doi: 10.1038/nature05999. PubMed DOI

Koc A., Markovic D., Ninkovic V., Martinez G. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Elsevier; Amsterdam, The Netherlands: 2020. Molecular mechanisms regulating priming and stress memory; pp. 247–265.

Beckers G.J., Jaskiewicz M., Liu Y., Underwood W.R., He S.Y., Zhang S., Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell. 2009;21:944–953. doi: 10.1105/tpc.108.062158. PubMed DOI PMC

Tateda C., Zhang Z., Shrestha J., Jelenska J., Chinchilla D., Greenberg J.T. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. Plant Cell. 2014;26:4171–4187. doi: 10.1105/tpc.114.131938. PubMed DOI PMC

Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 2020;227:529–544. doi: 10.1111/nph.16515. PubMed DOI

Huang P.Y., Yeh Y.H., Liu A.C., Cheng C.P., Zimmerli L. The Arabidopsis LecRK-VI. 2 associates with the pattern-recognition receptor FLS 2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J. 2014;79:243–255. doi: 10.1111/tpj.12557. PubMed DOI

Giovannoni M., Marti L., Ferrari S., Tanaka-Takada N., Maeshima M., Ott T., De Lorenzo G., Mattei B. The plasma membrane-associated Ca2+-binding protein PCaP1 is required for oligogalacturonide and flagellin-induced priming and immunity. Plant Cell Environ. 2021;44:3775–3792. doi: 10.1111/pce.14192. PubMed DOI PMC

Lolle S., Stevens D., Coaker G. Plant NLR-triggered immunity: From receptor activation to downstream signaling. Curr. Opin. Immunol. 2020;62:99–105. doi: 10.1016/j.coi.2019.12.007. PubMed DOI PMC

Adachi H., Kamoun S., Maqbool A. A resistosome-activated ‘death switch’. Nat. Plants. 2019;5:457–458. doi: 10.1038/s41477-019-0425-9. PubMed DOI

Banani S.F., Lee H.O., Hyman A.A., Rosen M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017;18:285–298. doi: 10.1038/nrm.2017.7. PubMed DOI PMC

Wang W., Gu Y. The emerging role of biomolecular condensates in plant immunity. Plant Cell. 2021:koab240. doi: 10.1093/plcell/koab240. PubMed DOI PMC

Cutter A.R., Hayes J.J. A brief review of nucleosome structure. FEBS Lett. 2015;589:2914–2922. doi: 10.1016/j.febslet.2015.05.016. PubMed DOI PMC

Bräutigam K., Cronk Q. DNA methylation and the evolution of developmental complexity in plants. Front. Plant Sci. 2018;9:1447. doi: 10.3389/fpls.2018.01447. PubMed DOI PMC

Baulcombe D.C., Dean C. Epigenetic regulation in plant responses to the environment. Cold Spring Harb. Perspect. Biol. 2014;6:a019471. doi: 10.1101/cshperspect.a019471. PubMed DOI PMC

Duempelmann L., Skribbe M., Bühler M. Small RNAs in the transgenerational inheritance of epigenetic information. Trends Genet. 2020;36:203–214. doi: 10.1016/j.tig.2019.12.001. PubMed DOI

Stassen J.H., López A., Jain R., Pascual-Pardo D., Luna E., Smith L.M., Ton J. The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Sci. Rep. 2018;8:14761. doi: 10.1038/s41598-018-32448-5. PubMed DOI PMC

Vivas M., Hernández J., Corcobado T., Cubera E., Solla A. Transgenerational Induction of Resistance to Phytophthora cinnamomi in Holm Oak. Forests. 2021;12:100. doi: 10.3390/f12010100. DOI

Lämke J., Brzezinka K., Bäurle I. HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana. Transcription. 2016;7:111–114. doi: 10.1080/21541264.2016.1187550. PubMed DOI PMC

Fabrizio P., Garvis S., Palladino F. Histone methylation and memory of environmental stress. Cells. 2019;8:339. doi: 10.3390/cells8040339. PubMed DOI PMC

Khan A.R., Enjalbert J., Marsollier A.-C., Rousselet A., Goldringer I., Vitte C. Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol. 2013;13:209. doi: 10.1186/1471-2229-13-209. PubMed DOI PMC

Noh S.W., Seo R.-R., Park H.J., Jung H.W. Two Arabidopsis homologs of human lysine-specific demethylase function in epigenetic regulation of plant defense responses. Front. Plant Sci. 2021;12:688003. doi: 10.3389/fpls.2021.688003. PubMed DOI PMC

Kim J.-H. Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int. J. Mol. Sci. 2021;22:2013. doi: 10.3390/ijms22042013. PubMed DOI PMC

Amaral J., Lamelas L., Valledor L., Castillejo M.Á., Alves A., Pinto G. Comparative proteomics of Pinus–Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. Physiol. Plant. 2021;173:2142–2154. doi: 10.1111/ppl.13563. PubMed DOI

Ando S., Jaskiewicz M., Mochizuki S., Koseki S., Miyashita S., Takahashi H., Conrath U. Priming for enhanced ARGONAUTE2 activation accompanies induced resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Pathol. 2021;22:19–30. doi: 10.1111/mpp.13005. PubMed DOI PMC

Jaskiewicz M., Conrath U., Peterhänsel C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 2011;12:50–55. doi: 10.1038/embor.2010.186. PubMed DOI PMC

Lusser A., Kölle D., Loidl P. Histone acetylation: Lessons from the plant kingdom. Trends Plant Sci. 2001;6:59–65. doi: 10.1016/S1360-1385(00)01839-2. PubMed DOI

Hartl M., Füßl M., Boersema P.J., Jost J.O., Kramer K., Bakirbas A., Sindlinger J., Plöchinger M., Leister D., Uhrig G. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol. Syst. Biol. 2017;13:949. doi: 10.15252/msb.20177819. PubMed DOI PMC

Zhou C., Zhang L., Duan J., Miki B., Wu K. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell. 2005;17:1196–1204. doi: 10.1105/tpc.104.028514. PubMed DOI PMC

Choi S.M., Song H.R., Han S.K., Han M., Kim C.Y., Park J., Lee Y.H., Jeon J.S., Noh Y.S., Noh B. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J. 2012;71:135–146. doi: 10.1111/j.1365-313X.2012.04977.x. PubMed DOI

Backer R., Naidoo S., Van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related family: Mechanistic insights in plant disease resistance. Front. Plant Sci. 2019;10:102. doi: 10.3389/fpls.2019.00102. PubMed DOI PMC

Yildiz I., Mantz M., Hartmann M., Zeier T., Kessel J., Thurow C., Gatz C., Petzsch P., Köhrer K., Zeier J. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiol. 2021;186:1679–1705. doi: 10.1093/plphys/kiab166. PubMed DOI PMC

Wu K., Zhang L., Zhou C., Yu C.-W., Chaikam V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 2008;59:225–234. doi: 10.1093/jxb/erm300. PubMed DOI

Ramirez-Prado J.S., Piquerez S.J., Bendahmane A., Hirt H., Raynaud C., Benhamed M. Modify the histone to win the battle: Chromatin dynamics in plant–pathogen interactions. Front. Plant Sci. 2018;9:355. doi: 10.3389/fpls.2018.00355. PubMed DOI PMC

Singh V., Banday Z.Z., Nandi A.K. Exogenous application of histone demethylase inhibitor trans-2-phenylcyclopropylamine mimics FLD loss-of-function phenotype in terms of systemic acquired resistance in Arabidopsis thaliana. Plant Signal. Behav. 2014;9:e29658. doi: 10.4161/psb.29658. PubMed DOI PMC

Gully K., Celton J.-M., Degrave A., Pelletier S., Brisset M.-N., Bucher E. Biotic stress-induced priming and de-priming of transcriptional memory in Arabidopsis and apple. Epigenomes. 2019;3:3. doi: 10.3390/epigenomes3010003. PubMed DOI PMC

Yuan J., Wang S., Liu Y.-H., Li J.-X., Zhou L.-Y., Li T., Zhou L., Zhang W.-J., Guo L.-P., Huang L.-Q. Preliminary study on memory function of Sorbus aucuparia suspension cell to biotic stress. Zhongguo Zhong Yao Za Zhi=Zhongguo Zhongyao Zazhi=China J. Chin. Mater. Med. 2021;46:2467–2473. PubMed

Abulfaraj A.A. Ph.D. Thesis. King Abdullah University of Science and Technology; Thuwal, Saudi Arabia: 2018. Investigating the Role of the Arabidopsis Homologue of the Human G3BP in RNA Metabolism, Cellular Stress Responses and Innate Immunity.

Zhao K., Kong D., Jin B., Smolke C.D., Rhee S.Y. A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. Elife. 2021;10:e69508. doi: 10.7554/eLife.69508. PubMed DOI PMC

Werghi S., Herrero F.A., Fakhfakh H., Gorsane F. Auxin drives tomato spotted wilt virus (TSWV) resistance through epigenetic regulation of auxin response factor ARF8 expression in tomato. Gene. 2021;804:145905. doi: 10.1016/j.gene.2021.145905. PubMed DOI

Zhang X., Ménard R., Li Y., Coruzzi G.M., Heitz T., Shen W.-H., Berr A. Arabidopsis SDG8 potentiates the sustainable transcriptional induction of the pathogenesis-related genes PR1 and PR2 during plant defense response. Front. Plant Sci. 2020;11:277. doi: 10.3389/fpls.2020.00277. PubMed DOI PMC

Ramírez-Tejero J.A., Cabanás C.G.-L., Valverde-Corredor A., Mercado-Blanco J., Luque F. Epigenetic Regulation of Verticillium dahliae Virulence: Does DNA Methylation Level Play A Role? Int. J. Mol. Sci. 2020;21:5197. doi: 10.3390/ijms21155197. PubMed DOI PMC

Chen J., Clinton M., Qi G., Wang D., Liu F., Fu Z.Q. Reprogramming and remodeling: Transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. J. Exp. Bot. 2020;71:5256–5268. doi: 10.1093/jxb/eraa072. PubMed DOI

Crespo-Salvador Ó., Sánchez-Giménez L., López-Galiano M., Fernández-Crespo E., Scalschi L., García-Robles I., Rausell C., Real M.D., González-Bosch C. The histone marks signature in exonic and intronic regions is relevant in early response of tomato genes to Botrytis cinerea and in miRNA regulation. Plants. 2020;9:300. doi: 10.3390/plants9030300. PubMed DOI PMC

Wang Z., Chen D., Sun F., Guo W., Wang W., Li X., Lan Y., Du L., Li S., Fan Y. ARGONAUTE 2 increases rice susceptibility to rice black-streaked dwarf virus infection by epigenetically regulating HEXOKINASE 1 expression. Mol. Plant Pathol. 2021;22:1029–1040. doi: 10.1111/mpp.13091. PubMed DOI PMC

Lodhi N., Singh M., Srivastava R., Sawant S.V., Tuli R. Epigenetic Malleability at Core Promoter Regulates Tobacco PR-1a Expression after Salicylic Acid Treatment. bioRxiv. 2021 doi: 10.1101/2021.07.24.453639. PubMed DOI

Martínez-Aguilar K., Hernández-Chávez J.L., Alvarez-Venegas R. Priming of seeds with INA and its transgenerational effect in common bean (Phaseolus vulgaris L.) plants. Plant Sci. 2021;305:110834. doi: 10.1016/j.plantsci.2021.110834. PubMed DOI

Da Silva A.R., da Costa Silva D., dos Santos Pinto K.N., Santos Filho H.P., Coelho Filho M.A., dos Santos Soares Filho W., Ferreira C.F., da Silva Gesteira A. Epigenetic responses to Phytophthora citrophthora gummosis in citrus. Plant Sci. 2021;313:111082. doi: 10.1016/j.plantsci.2021.111082. PubMed DOI

Chacón-Cerdas R., Barboza-Barquero L., Albertazzi F.J., Rivera-Mendez W. Transcription factors controlling biotic stress response in potato plants. Physiol. Mol. Plant Pathol. 2020;112:101527. doi: 10.1016/j.pmpp.2020.101527. DOI

Burns A.M., Gräff J. Cognitive epigenetic priming: Leveraging histone acetylation for memory amelioration. Curr. Opin. Neurobiol. 2021;67:75–84. doi: 10.1016/j.conb.2020.08.011. PubMed DOI

Bhatt D., Saxena S.C., Arora S. Microbes and Signaling Biomolecules against Plant Stress. Springer; Berlin/Heidelberg, Germany: 2021. ROS Signaling Under Oxidative Stress in Plants; pp. 269–286.

Park S., Waterland N.L. Evaluation of Calcium Application Methods on Delaying Plant Wilting under Water Deficit in Bedding Plants. Agronomy. 2021;11:1383. doi: 10.3390/agronomy11071383. DOI

Singhal R.K., Jatav H.S., Aftab T., Pandey S., Mishra U.N., Chauhan J., Chand S., Saha D., Dadarwal B.K., Chandra K. Roles of nitric oxide in conferring multiple abiotic stress tolerance in plants and crosstalk with other plant growth regulators. J. Plant Growth Regul. 2021;40:2303–2328. doi: 10.1007/s00344-021-10446-8. DOI

Singh P., Arif Y., Siddiqui H., Hayat S. Jasmonates and Salicylates Signaling in Plants. Springer; Berlin/Heidelberg, Germany: 2021. Jasmonate: A Versatile Messenger in Plants; pp. 129–158.

Bhadouriya S.L., Mehrotra S., Basantani M.K., Loake G.J., Mehrotra R. Role of chromatin architecture in plant stress responses: An update. Front. Plant Sci. 2021;11:2131. doi: 10.3389/fpls.2020.603380. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...