Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action

. 2021 Dec 22 ; 27 (1) : . [epub] 20211222

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35011273

Grantová podpora
MUNI/A/1689/2020 Masaryk University
MUNI/A/1390/2020 Masaryk University
00209805 Masaryk Memorial Cancer Institute

Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.

Zobrazit více v PubMed

Dasari S., Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Dilruba S., Kalayda G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016;77:1103–1124. doi: 10.1007/s00280-016-2976-z. PubMed DOI

Arnesano F., Natile G. Mechanistic insight into the cellular uptake and processing of cisplatin 30 years after its approval by FDA. Coord. Chem. Rev. 2009;253:2070–2081. doi: 10.1016/j.ccr.2009.01.028. DOI

Oun R., Moussa Y.E., Wheate N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalt. Trans. 2018;47:6645–6653. doi: 10.1039/C8DT00838H. PubMed DOI

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Trudu F., Amato F., Vaňhara P., Pivetta T., Peña-Méndez E.M., Havel J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed. 2015;13:79–103. doi: 10.1016/j.jab.2015.03.003. DOI

Van Den Berghe P.V.E., Klomp L.W.J. New developments in the regulation of intestinal copper absorptionn. Nutr. Rev. 2009;67:658–672. doi: 10.1111/j.1753-4887.2009.00250.x. PubMed DOI

Bost M., Houdart S., Oberli M., Kalonji E., Huneau J.F., Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016;35:107–115. doi: 10.1016/j.jtemb.2016.02.006. PubMed DOI

Jomova K., Baros S., Valko M. Redox active metal-induced oxidative stress in biological systems. Transit. Met. Chem. 2012;37:127–134. doi: 10.1007/s11243-012-9583-6. DOI

De Luca A., Barile A., Arciello M., Rossi L. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J. Trace Elem. Med. Biol. 2019;55:204–213. doi: 10.1016/j.jtemb.2019.06.008. PubMed DOI

Daniel K.G. Copper storage diseases: Menkes, Wilson’s, and Cancer. Front. Biosci. 2004;9:2652–2662. doi: 10.2741/1424. PubMed DOI

Díez M., Arroyo M., Cerdàn F.J., Muñoz M., Martin M.A., Balibrea J.L. Serum and Tissue Trace Metal Levels in Lung Cancer. Oncology. 1989;46:230–234. doi: 10.1159/000226722. PubMed DOI

Geraki K., Farquharson M.J., Bradley D.A. Concentrations of Fe, Cu and Zn in breast tissue: A synchrotron XRF study. Phys. Med. Biol. 2002;47:2327–2339. doi: 10.1088/0031-9155/47/13/310. PubMed DOI

Denoyer D., Masaldan S., La Fontaine S., Cater M.A. Targeting copper in cancer therapy: “Copper That Cancer”. Metallomics. 2015;7:1459–1476. doi: 10.1039/C5MT00149H. PubMed DOI

Sigman D.S., Graham D.R., D’Aurora V., Stern A.M. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J. Biol. Chem. 1979;254:12269–12272. doi: 10.1016/S0021-9258(19)86305-6. PubMed DOI

Barton J.K., Olmon E.D., Sontz P.A. Metal complexes for DNA-mediated charge transport. Coord. Chem. Rev. 2011;255:619–634. doi: 10.1016/j.ccr.2010.09.002. PubMed DOI PMC

Nano A., Dai J., Bailis J.M., Barton J.K. Rhodium Complexes Targeting DNA Mismatches as a Basis for New Therapeutics in Cancers Deficient in Mismatch Repair. Biochemistry. 2021;60:2055–2063. doi: 10.1021/acs.biochem.1c00302. PubMed DOI

Marzano C., Pellei M., Tisato F., Santini C. Copper Complexes as Anticancer Agents. Anticancer Agents Med. Chem. 2009;9:185–211. doi: 10.2174/187152009787313837. PubMed DOI

Santini C., Pellei M., Gandin V., Porchia M., Tisato F., Marzano C. Advances in copper complexes as anticancer agents. Chem. Rev. 2014;114:815–862. doi: 10.1021/cr400135x. PubMed DOI

Molinaro C., Martoriati A., Pelinski L., Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers. 2020;12:2863. doi: 10.3390/cancers12102863. PubMed DOI PMC

Zehra S., Tabassum S., Arjmand F. Biochemical pathways of copper complexes: Progress over the past 5 years. Drug Discov. Today. 2021;26:1086–1096. doi: 10.1016/j.drudis.2021.01.015. PubMed DOI

Krasnovskaya O., Naumov A., Guk D., Gorelkin P., Erofeev A., Beloglazkina E., Majouga A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci. 2020;21:3965. doi: 10.3390/ijms21113965. PubMed DOI PMC

Park K.C., Fouani L., Jansson P.J., Wooi D., Sahni S., Lane D.J.R., Palanimuthu D., Lok H.C., Kovačević Z., Huang M.L.H., et al. Copper and conquer: Copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics. 2016;8:874–886. doi: 10.1039/C6MT00105J. PubMed DOI

Pivetta T., Isaia F., Verani G., Cannas C., Serra L., Castellano C., Demartin F., Pilla F., Manca M., Pani A. Mixed-1,10-phenanthroline–Cu(II) complexes: Synthesis, cytotoxic activity versus hematological and solid tumor cells and complex formation equilibria with glutathione. J. Inorg. Biochem. 2012;114:28–37. doi: 10.1016/j.jinorgbio.2012.04.017. PubMed DOI

Pivetta T., Trudu F., Valletta E., Isaia F., Castellano C., Demartin F., Tuveri R., Vascellari S., Pani A. Novel copper(II) complexes as new promising antitumour agents. A crystal structure of [Cu(1,10-phenanthroline-5,6-dione)2 (OH2)(OClO3)](ClO4) J. Inorg. Biochem. 2014;141:103–113. doi: 10.1016/j.jinorgbio.2014.08.011. PubMed DOI

Vascellari S., Valletta E., Perra D., Pinna E., Serra A., Isaia F., Pani A., Pivetta T. Cisplatin, glutathione and the third wheel: Acopper-(1,10-phenanthroline) complex modulates cisplatin-GSH interactions from antagonism to synergism in cancer cells resistant to cisplatin. RSC Adv. 2019;9:5362–5376. doi: 10.1039/C8RA09652J. PubMed DOI PMC

Moráň L., Pivetta T., Masuri S., Vašíčková K., Walter F., Prehn J., Elkalaf M., Trnka J., Havel J., Vaňhara P. Mixed copper(II)–phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics. 2019;11:1481–1489. doi: 10.1039/c9mt00055k. PubMed DOI

Shi X., Chen Z., Wang Y., Guo Z., Wang X. Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalt. Trans. 2018;47:5049–5054. doi: 10.1039/C8DT00794B. PubMed DOI

Masuri S., Cadoni E., Cabiddu M.G., Isaia F., Demuru M.G., Moráň L., Buček D., Vaňhara P., Havel J., Pivetta T. The first copper(II) complex with 1,10-phenanthroline and salubrinal with interesting biochemical properties. Metallomics. 2020;12:891–901. doi: 10.1039/d0mt00006j. PubMed DOI

Fantoni N.Z., Molphy Z., O’Carroll S., Menounou G., Mitrikas G., Krokidis M.G., Chatgilialoglu C., Colleran J., Banasiak A., Clynes M., et al. Polypyridyl-Based Copper Phenanthrene Complexes: Combining Stability with Enhanced DNA Recognition. Chem.-A Eur. J. 2021;27:971–983. doi: 10.1002/chem.202001996. PubMed DOI

Prisecaru A., McKee V., Howe O., Rochford G., McCann M., Colleran J., Pour M., Barron N., Gathergood N., Kellett A. Regulating bioactivity of Cu2+ Bis-1,10-phenanthroline artificial metallonucleases with sterically functionalized pendant carboxylates. J. Med. Chem. 2013;56:8599–8615. doi: 10.1021/jm401465m. PubMed DOI

Thati B., Noble A., Creaven B.S., Walsh M., Kavanagh K., Egan D.A. Apoptotic cell death: A possible key event in mediating the in vitro anti-proliferative effect of a novel copper(II) complex, [Cu(4-Mecdoa)(phen)2] (phen = phenanthroline, 4-Mecdoa = 4-methylcoumarin-6,7-dioxactetate), in human malignant cancer cells. Eur. J. Pharmacol. 2007;569:16–28. doi: 10.1016/j.ejphar.2007.04.064. PubMed DOI

Kellett A., O’Connor M., McCann M., McNamara M., Lynch P., Rosair G., McKee V., Creaven B., Walsh M., McClean S., et al. Bis-phenanthroline copper(II) phthalate complexes are potent in vitro antitumour agents with “self-activating” metallo-nuclease and DNA binding properties. Dalt. Trans. 2011;40:1024–1027. doi: 10.1039/C0DT01607A. PubMed DOI

Zhang Z., Wang H., Wang Q., Yan M., Wang H., Bi C., Sun S., Fan Y. Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1,10-phenanthroline. Int. J. Oncol. 2016;49:691–699. doi: 10.3892/ijo.2016.3542. PubMed DOI

Boodram J.N., Mcgregor I.J., Bruno P.M., Cressey P.B., Hemann M.T., Suntharalingam K. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes. Angew. Chem. 2016;128:2895–2900. doi: 10.1002/ange.201510443. PubMed DOI

Eremina J.A., Lider E.V., Sukhikh T.S., Klyushova L.S., Perepechaeva M.L., Sheven’ D.G., Berezin A.S., Grishanova A.Y., Potkin V.I. Water-soluble copper(II) complexes with 4,5-dichloro-isothiazole-3-carboxylic acid and heterocyclic N-donor ligands: Synthesis, crystal structures, cytotoxicity, and DNA binding study. Inorg. Chim. Acta. 2020;510:119778. doi: 10.1016/j.ica.2020.119778. DOI

Mo X., Chen Z., Chu B., Liu D., Liang Y., Liang F. Structure and anticancer activities of four Cu(II) complexes bearing tropolone. Metallomics. 2019;11:1952–1964. doi: 10.1039/C9MT00165D. PubMed DOI

Mutlu Gençkal H., Erkisa M., Alper P., Sahin S., Ulukaya E., Ari F. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: Synthesis, characterization, anti-cancer and anti-oxidant activity. J. Biol. Inorg. Chem. 2020;25:161–177. doi: 10.1007/s00775-019-01749-z. PubMed DOI

Prisecaru A., Devereux M., Barron N., McCann M., Colleran J., Casey A., McKee V., Kellett A. Potent oxidative DNA cleavage by the di-copper cytotoxin: [Cu2(μ-terephthalate)(1,10-phen)4]2+ Chem. Commun. 2012;48:6906–6908. doi: 10.1039/c2cc31023f. PubMed DOI

Ruiz Azuara L. Process to Obtain New Mixed Copper Aminoacidate Complexes from Phenanthrolines and Their Alkyl Derivatives to be Used as Anticancerigenic Agents. European Patent Application EP0434445A2. 1991 June 26;

Kachadourian R., Brechbuhl H.M., Ruiz-Azuara L., Gracia-Mora I., Day B.J. Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology. 2010;268:176–183. doi: 10.1016/j.tox.2009.12.010. PubMed DOI PMC

Marín-Hernández A., Gracia-Mora I., Ruiz-Ramírez L., Moreno-Sánchez R. Toxic effects of copper-based antineoplastic drugs (Casiopeinas®) on mitochondrial functions. Biochem. Pharmacol. 2003;65:1979–1989. doi: 10.1016/S0006-2952(03)00212-0. PubMed DOI

Rivero-Müller A., De Vizcaya-Ruiz A., Plant N., Ruiz L., Dobrota M. Mixed chelate copper complex, Casiopeina IIgly®, binds and degrades nucleic acids: A mechanism of cytotoxicity. Chem. Biol. Interact. 2007;165:189–199. doi: 10.1016/j.cbi.2006.12.002. PubMed DOI

Alemón-Medina R., Muñoz-Sánchez J.L., Ruiz-Azuara L., Gracia-Mora I. Casiopeína IIgly induced cytotoxicity to HeLa cells depletes the levels of reduced glutathione and is prevented by dimethyl sulfoxide. Toxicol. Vitr. 2008;22:710–715. doi: 10.1016/j.tiv.2007.11.011. PubMed DOI

De Vizcaya-Ruiz A., Rivero-Müller A., Ruiz-Ramirez L., Howarth J.A., Dobrota M. Hematotoxicity response in rats by the novel copper-based anticancer agent: Casiopeina II. Toxicology. 2003;194:103–113. doi: 10.1016/j.tox.2003.08.009. PubMed DOI

Resendiz-Acevedo K., García-Aguilera M.E., Esturau-Escofet N., Ruiz-Azuara L. 1H -NMR Metabolomics Study of the Effect of Cisplatin and Casiopeina-II Gly on MDA-MB-231 Breast Tumor Cells. Front. Mol. Biosci. 2021;8:742859. doi: 10.3389/fmolb.2021.742859. PubMed DOI PMC

García-Ramos J.C., Gutiérrez A.G., Vázquez-Aguirre A., Toledano-Magaña Y., Alonso-Sáenz A.L., Gómez-Vidales V., Flores-Alamo M., Mejía C., Ruiz-Azuara L. The mitochondrial apoptotic pathway is induced by Cu(II) antineoplastic compounds (Casiopeínas®) in SK-N-SH neuroblastoma cells after short exposure times. BioMetals. 2017;30:43–58. doi: 10.1007/s10534-016-9983-8. PubMed DOI

Ruiz-Azuara L., Bastian G., Bravo-Gómez M.E., Cañas R.C., Flores-Alamo M., Fuentes I., Mejia C., García-Ramos J.C., Serrano A. Proceedings of the Clinical Trials. American Association for Cancer Research; Philadelphia, PA, USA: 2014. Abstract CT408: Phase I study of one mixed chelates copper(II) compound, Casiopeína CasIIIia with antitumor activity and its mechanism of action; p. CT408.

2nd March 2017; New Cancer Drug Called Casiopeínas Tested at Phase I Clinical Trials, Source: Information Agency CONACYT. [(accessed on 13 August 2021)]. Available online: http://www.salud.carlosslim.org/english2/new-cancer-drug-called-casiopeinas-tested-at-phase-i-clinical-trials/

Correia I., Borovic S., Cavaco I., Matos C.P., Roy S., Santos H.M., Fernandes L., Capelo J.L., Ruiz-Azuara L., Pessoa J.C. Evaluation of the binding of four anti-tumor Casiopeínas® to human serum albumin. J. Inorg. Biochem. 2017;175:284–297. doi: 10.1016/j.jinorgbio.2017.07.025. PubMed DOI

Naso L.G., Martínez Medina J.J., D’Alessandro F., Rey M., Rizzi A., Piro O.E., Echeverría G.A., Ferrer E.G., Williams P.A.M. Ternary copper(II) complex of 5-hydroxytryptophan and 1,10-phenanthroline with several pharmacological properties and an adequate safety profile. J. Inorg. Biochem. 2020;204:110933. doi: 10.1016/j.jinorgbio.2019.110933. PubMed DOI

Karpagam S., Kartikeyan R., Paravai Nachiyar P., Velusamy M., Kannan M., Krishnan M., Chitgupi U., Lovell J.F., Abdulkader Akbarsha M., Rajendiran V. ROS-mediated cell death induced by mixed ligand copper(II) complexes of l-proline and diimine: Effect of co-ligand. J. Coord. Chem. 2019;72:3102–3127. doi: 10.1080/00958972.2019.1680834. DOI

Seng H.L., Wang W.S., Kong S.M., Alan Ong H.K., Win Y.F., Raja Noor Zaliha R.N.Z.R., Chikira M., Leong W.K., Ahmad M., Khoo A.S.B., et al. Biological and cytoselective anticancer properties of copper(II)-polypyridyl complexes modulated by auxiliary methylated glycine ligand. BioMetals. 2012;25:1061–1081. doi: 10.1007/s10534-012-9572-4. PubMed DOI

Li D.D., Yagüe E., Wang L.Y., Dai L.L., Yang Z.B., Zhi S., Zhang N., Zhao X.M., Hu Y.H. Novel Copper Complexes That Inhibit the Proteasome and Trigger Apoptosis in Triple-Negative Breast Cancer Cells. ACS Med. Chem. Lett. 2019;10:1328–1335. doi: 10.1021/acsmedchemlett.9b00284. PubMed DOI PMC

Alvarez N., Kramer M.G., Ellena J., Costa-Filho A., Torre M.H., Facchin G. Copper-diimine coordination compounds as potential new tools in the treatment of cancer. Cancer Reports Rev. 2018;2:1–5. doi: 10.15761/CRR.1000161. DOI

Iglesias S., Alvarez N., Torre M.H., Kremer E., Ellena J., Ribeiro R.R., Barroso R.P., Costa-Filho A.J., Kramer G.M., Facchin G. Synthesis, structural characterization and cytotoxic activity of ternary copper(II)-dipeptide-phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer. J. Inorg. Biochem. 2014;139:117–123. doi: 10.1016/j.jinorgbio.2014.06.007. PubMed DOI

Arjmand F., Sharma S., Parveen S., Toupet L., Yu Z., Cowan J.A. Copper(II) L/D-valine-(1,10-phen) complexes target human telomeric G-quadruplex motifs and promote site-specific DNA cleavage and cellular cytotoxicity. Dalt. Trans. 2020;49:9888–9899. doi: 10.1039/D0DT01527J. PubMed DOI PMC

Acilan C., Cevatemre B., Adiguzel Z., Karakas D., Ulukaya E., Ribeiro N., Correia I., Pessoa J.C. Synthesis, biological characterization and evaluation of molecular mechanisms of novel copper complexes as anticancer agents. Biochim. Biophys. Acta-Gen. Subj. 2017;1861:218–234. doi: 10.1016/j.bbagen.2016.10.014. PubMed DOI

Goswami T.K., Chakravarthi B.V.S.K., Roy M., Karande A.A., Chakravarty A.R. Ferrocene-conjugated l-tryptophan copper(II) complexes of phenanthroline bases showing DNA photocleavage activity and cytotoxicity. Inorg. Chem. 2011;50:8452–8464. doi: 10.1021/ic201028e. PubMed DOI

Jia L., Xu X.-M., Xu J., Chen L.-H., Jiang P., Cheng F.-X., Lu G.-N., Wang Q., Wu J.-C., Tang N. Synthesis, Characterization, Cytotoxic Activities, and DNA-Binding Studies of Ternary Copper(II) Complexes with New Coumarin Derivatives. Chem. Pharm. Bull. 2010;58:1003–1008. doi: 10.1248/cpb.58.1003. PubMed DOI

Northcote-Smith J., Kaur P., Suntharalingam K. A Cancer Stem Cell Potent Copper(II) Complex with a S, N, S-Schiff base Ligand and Bathophenanthroline. Eur. J. Inorg. Chem. 2021;2021:1770–1775. doi: 10.1002/ejic.202100125. DOI

Periasamy V.S., Riyasdeen A., Rajendiran V., Palaniandavar M., Krishnamurthy H., Alshatwi A.A., Akbarsha M.A. Induction of Redox-Mediated Cell Death in ER-Positive and ER-Negative Breast Cancer Cells by a Copper(II)-Phenolate Complex: An In Vitro and In Silico Study. Molecules. 2020;25:4504. doi: 10.3390/molecules25194504. PubMed DOI PMC

Chew S.T., Lo K.M., Lee S.K., Heng M.P., Teoh W.Y., Sim K.S., Tan K.W. Copper complexes with phosphonium containing hydrazone ligand: Topoisomerase inhibition and cytotoxicity study. Eur. J. Med. Chem. 2014;76:397–407. doi: 10.1016/j.ejmech.2014.02.049. PubMed DOI

Kumar M., Parsekar S.U., Duraipandy N., Kiran M.S., Koley A.P. Synthesis, DNA binding and in vitro cytotoxicity studies of a mononuclear copper(II) complex containing N2S(thiolate)Cu core and 1,10-phenanthroline as a coligand. Inorg. Chim. Acta. 2019;484:219–226. doi: 10.1016/j.ica.2018.09.044. DOI

Kellett A., O’Connor M., McCann M., Howe O., Casey A., McCarron P., Kavanagh K., McNamara M., Kennedy S., May D.D., et al. Water-soluble bis(1,10-phenanthroline) octanedioate Cu2+ and Mn2+ complexes with unprecedented nano and picomolar in vitro cytotoxicity: Promising leads for chemotherapeutic drug development. Med. Chem. Comm. 2011;2:579. doi: 10.1039/c0md00266f. DOI

Parsekar S.U., Singh M., Mishra D.P., Antharjanam P.K.S., Koley A.P., Kumar M. Efficient hydrolytic cleavage of DNA and antiproliferative effect on human cancer cells by two dinuclear Cu(II) complexes containing a carbohydrazone ligand and 1,10-phenanthroline as a coligand. J. Biol. Inorg. Chem. 2019;24:343–363. doi: 10.1007/s00775-019-01651-8. PubMed DOI

Cao S., Li X., Gao Y., Li F., Li K., Cao X., Dai Y., Mao L., Wang S., Tai X. A simultaneously GSH-depleted bimetallic Cu(II) complex for enhanced chemodynamic cancer therapy. Dalt. Trans. 2020;49:11851–11858. doi: 10.1039/D0DT01742F. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...