Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis

. 2021 Apr ; 77 (4) : 2122-2128. [epub] 20210101

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33332713

Grantová podpora
QK1820081 Národní Agentura pro Zemědělský Výzkum
CZ.02.1.01/0.0/0.0/15_003/0000433 OP RDE
Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague
Colorado State University

BACKGROUND: Intensive application of acetolactate synthase (ALS)-inhibiting herbicides has resulted in herbicide-resistance in many weeds, including Bromus sterilis. The present study was conducted to identify the mechanisms conferring resistance to ALS-inhibiting herbicides in a Bromus sterilis biotype. RESULTS: Dose-response studies revealed the resistant biotype to be 288 times less sensitive to pyroxsulam than the susceptible biotype. Furthermore, experiment with a single-dose, proved this biotype was also cross-resistant to propoxycarbazone, iodosulfuron plus mesosulfuron and sulfosulfuron. Prior treatment with malathion, a known inhibitor of cytochrome P450s, reduced the level of resistance to pyroxsulam. No mutations were detected from the partial ALS gene sequencing. Flow cytometry and chromosome counting rejected ploidy level variation between the susceptible and resistant biotypes. Relative copy number variation ruled out gene amplification. Quantitative real-time polymerase chain reaction (PCR) detected a significant difference in ALS gene expression between the susceptible and resistant biotypes. CONCLUSIONS: Target gene overexpression and enhanced metabolism by cytochrome P450s are likely mechanisms of resistance to pyroxsulam in Bromus sterilis. The current findings highlight the need to monitor additional brome populations for herbicide resistance in Europe and endorse the need for alternate herbicides in integrated weed management to delay the possible evolution of herbicide resistance in these species. © 2020 Society of Chemical Industry.

Zobrazit více v PubMed

Allen PS and Meyer SE, Ecology and ecological genetics of seed dormancy in downy brome. Weed Sci 50:241-247 (2002).

Valičková V, Hamouzová K, Kolářová M and Soukup J, Germination responses to water potential in Bromus sterilis L. under different temperatures and light regimes. Plant Soil Environ 63:368-374 (2017).

Jursík M, Kolářová M, Soukup J and Žďárková V, Effects of adjuvants and carriers on propoxycarbazone and pyroxsulam efficacy on Bromus sterilis in winter wheat. Plant Soil Environ 62:447-452 (2016).

Moray R, Büchse A and Hurle K, Bromus species in winter wheat-population dynamics and competitiveness. Commun Agric Appl Biol Sci 68:341-352 (2003).

Geier PW, Stahlman PW, Peterson DE and Claassen MM, Pyroxsulam compared with competitive standards for efficacy in winter wheat. Weed Technol 25:316-321 (2011).

Anthimidou E, Ntoanidou S, Madesis P and Eleftherohorinos I, Mechanisms of Lolium rigidum multiple resistance to ALS- and ACCase-inhibiting herbicides and their impact on plant fitness. Pest Biochem Physiol 164:65-72 (2020).

Mazur BJ and Falco SC, The development of herbicide resistant crops. Annu Rev Plant Physiol Plant Mol Biol 40:441-470 (1989).

Rey-Caballero J, Menéndez J, Osuna MD, Salas M and Torra J, Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pest Biochem Physiol 138:57-65 (2017).

Duggleby RG, McCourt JA and Guddat LW, Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309-324 (2008).

Chipman D, Barak Z and Schloss JV, Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401-419 (1998).

Schloss JV, Recent advances in understanding the mechanism and inhibition of acetolactate synthase, in Herbicides Inhibiting Branched-Chain Amino Acid Biosynthesis: Recent Developments, ed. by Stetter J. Springer, Berlin, pp. 3-14 (1994).

Hamouzová K, Košnarová P, Salava J, Soukup J and Hamouz P, Mechanisms of resistance to acetolactate synthase-inhibiting herbicides in populations of Apera spica-venti from the Czech Republic. Pest Manag Sci 70:541-548 (2014).

McNaughton KE, Letarte J, Lee EA and Tardif FJ, Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci 53:17-22 (2005).

Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A et al., Mechanisms of evolved herbicide resistance. J Biol Chem 295:10307-10330 (2020).

Jugulam M and Shyam C, Non-target-site resistance to herbicides: recent developments. Plants 8:417 (2019).

Baucom RS, Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? New Phytol 223:68-82 (2019).

Tétard-Jones C, Sabbadin F, Moss S, Hull R, Neve P and Edwards R, Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. Plant J 94:709-720 (2018).

Scarabel L, Pernin F and Délye C, Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci 238:158-169 (2015).

Ghanizadeh H and Harrington KC, Non-target site mechanisms of resistance to herbicides. Critical Reviews in Plant Sciences 36:24-34 (2017).

Liu W, Bai S, Zhao N, Jia S, Li W, Zhang L et al., Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC Plant Biol 18:225 (2018).

Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott M-C et al., RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J 78:865-876 (2014).

Délye C, Gardin JAC, Boucansaud K, Chauvel B and Petit C, Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Res 51:433-437 (2011).

Pan L, Gao H, Xia W, Zhang T, and Dong L, Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. Journal of Experimental Botany 67:1745-1757 (2016).

Davies LR, Onkokesung N, Brazier-Hicks M, Edwards R and Moss S, Detection and characterization of resistance to acetolactate synthase inhibiting herbicides in Anisantha and Bromus species in the United Kingdom. Pest Manag Sci 76:2473-2482 (2020).

Chen J, Huang Z, Huang H, Wei S, Liu Y, Jiang C et al., Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress. Scientific Reports 7:46494 (2017).

Xu H, Li J, Wu R, Su W, Wu X, Wang L et al., Identification of reference genes for studying herbicide resistance mechanisms in Japanese foxtail (Alopecurus japonicus). Weed Science 65:557-566 (2017).

Roy A and Palli SR, Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics 19:934 (2018).

Rao X, Huang X, Zhou Z and Lin X, An improvement of the 2^(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71-85 (2013).

Zahumenická P, Fernández E, Šedivá J, Žiarovská J, Ros-Santaella JL, Martínez-Fernández D et al., Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L. Plant Cell Tissue Organ Cult 132:317-327 (2018).

Singh RJ, Practical Manual on Plant Cytogenetics. CRC Press, Boca Raton, FL (2017).

Pekár S and Brabec M, Modern Analysis of Biological Data: Generalized Linear Models in R. Masarykova Univerzita, Brno (2016).

Nakka S, Thompson CR, Peterson DE and Jugulam M, Target site-based and non-target site based resistance to ALS inhibitors in Palmer amaranth (Amaranthus palmeri). Weed Sci 65:681-689 (2017).

Beckie HJ and Tardif FJ, Herbicide cross resistance in weeds. Crop Prot 35:15-28 (2012).

Boutsalis P, Karotam J and Powles SB, Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pest Sci 55:507-516 (1999).

Park KW and Mallory-Smith CA, Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44:71-77 (2004).

Uchino A, Ogata S, Kohara H, Yoshida S, Yoshioka T and Watanabe H, Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biol Manag 7:89-96 (2007).

Yu Q, Nelson JK, Zheng MQ, Jackson M and Powles SB, Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag Sci 63:918-927 (2007).

Tan M-K, Preston C and Wang G-X, Molecular basis of multiple resistance to ACCase-inhibiting and ALS-inhibiting herbicides in Lolium rigidum. Weed Res 47:534-541 (2007).

Délye C and Boucansaud K, A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res 48:97-101 (2008).

Yu Q, Ahmad-Hamdani MS, Han H, Christoffers MJ and Powles SB, Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species. Heredity 110:220-231 (2013).

Iwakami S, Shimono Y, Manabe Y, Endo M, Shibaike H, Uchino A et al., Copy number variation in acetolactate synthase genes of thifensulfuron-methyl resistant Alopecurus aequalis (Shortawn foxtail) accessions in Japan. Front Plant Sci 8:254 (2017).

Sammons RD and Gaines TA, Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367-1377 (2014).

Jaenisch R and Bird A, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245-254 (2003).

Wolffe AP and Matzke MA, Epigenetics: regulation through repression. Science 286:481-486 (1999).

Chang Y-N, Zhu C, Jiang J, Zhang H, Zhu J-K and Duan C-G, Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62:563-580 (2020).

Kim J-M, Sasaki T, Ueda M, Sako K and Seki M, Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114 (2015).

Markus C, Pecinka A, Karan R, Barney JN and Merotto A, Epigenetic regulation - contribution to herbicide resistance in weeds? Pest Manag Sci 74:275-281 (2018).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace