Characterization of the Molecular Mechanisms of Resistance against DMI Fungicides in Cercospora beticola Populations from the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04030242
Technology Agency of the Czech Republic
PubMed
34947044
PubMed Central
PMC8706352
DOI
10.3390/jof7121062
PII: jof7121062
Knihovny.cz E-zdroje
- Klíčová slova
- Cercospora beticola, Cyp51, DMI fungicide resistance, molecular dynamics simulations, real-time PCR,
- Publikační typ
- časopisecké články MeSH
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most important foliar pathogen of sugar beet worldwide. Extensive reliance on fungicides to manage CLS has resulted in the evolution of fungicide resistance in C. beticola worldwide, including populations in the Czech Republic. One important class of fungicides used to manage CLS is the sterol demethylation inhibitors (DMI). The aim of our study was to assess DMI resistance in C. beticola from the Czech Republic and elucidate the molecular basis of DMI resistance in this population. A total of 50 isolates were collected in 2018 and 2019 from the major sugar beet growing regions of the Czech Republic and assessed for in vitro sensitivity to the DMI fungicides propiconazole, prochloraz, and epoxiconazole. These analyses identified three strains that exhibited 50% effective concentration (EC50) values > 1.0 μg mL-1 against respective fungicides, which were therefore considered resistant. In contrast, strains that exhibited lowest EC50 values were considered sensitive. To explore the molecular basis of resistance in these three strains, the cytochrome P450-dependent sterol 14α-demethylase (Cyp51) gene was sequenced. Sequence analysis identified a Y464S mutation in all three resistant strains. To assess whether Cyp51 gene expression may play a role in DMI resistance, selected strains were grown in vitro with and without fungicide treatment. These analyses indicated that Cyp51 gene expression was significantly induced after fungicide treatment. Thus, we conclude that Y464S point mutation along with induced Cyp51 gene overexpression is likely responsible for resistance against DMI fungicides in C. beticola from the Czech Republic.
Zobrazit více v PubMed
Weiland J., Koch G. Sugar beet leaf spot disease (Cercospora beticola Sacc.) Mol. Plant Pathol. 2004;5:157–166. doi: 10.1111/j.1364-3703.2004.00218.x. PubMed DOI
Rangel L.I., Spanner R.E., Ebert M.K., Pethybridge S.J., Stukenbrock E.H., de Jonge R., Secor G.A., Bolton M.D. Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Mol. Plant Pathol. 2020;21:1020–1041. doi: 10.1111/mpp.12962. PubMed DOI PMC
Skaracis G.N., Biancardi E. Breeding for Cercospora resistance in sugar beet. Cercospora beticola Sacc Biol. Agron. Influ. Control Meas. Sugar Beet. 2000;2:177–195.
Lollis M., King S., Jacobsen B., Lollis M. Influence of glyphosate on Fusarium wilt, Cercospora leaf spot, and Rhizoctonia root and Crown rot diseases of sugar beets. Phytopathology. 2009;99:S76.
Skaracis G.N., Pavli O.I., Biancardi E. Cercospora leaf spot disease of sugar beet. Sugar Tech. 2010;12:220–228. doi: 10.1007/s12355-010-0055-z. DOI
Khan J., Del Río L.E., Nelson R., Khan M.F.R. Improving the Cercospora leaf spot management model for sugar beet in Minnesota and North Dakota. Plant Dis. 2007;91:1105–1108. doi: 10.1094/PDIS-91-9-1105. PubMed DOI
Wolf P.F.J., Verreet J.A. Quaternary concept of Integrated Pest Management (IPM) developed for the control of Cercospora leaf spot in sugar beet. Cercospora Leaf Spot Sugar Beet Relat. Species Am. Phytopathol. Soc. St Paul Minn. USA. 2010:223–233.
Muellender M.M., Mahlein A.-K., Stammler G., Varrelmann M. Evidence for the association of target-site resistance in Cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates. Pest Manag. Sci. 2021;77:1765–1774. doi: 10.1002/ps.6197. PubMed DOI
Bolton M.D., Rivera V., Secor G. Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan, United States. Pest Manag. Sci. 2013;69:35–39. doi: 10.1002/ps.3358. PubMed DOI
Secor G.A., Rivera V.V., Khan M.F.R., Gudmestad N.C. Monitoring fungicide sensitivity of Cercospora beticola of sugar beet for disease management decisions. Plant Dis. 2010;94:1272–1282. doi: 10.1094/PDIS-07-09-0471. PubMed DOI
Kayamori M., Zakharycheva A., Saito H., Komatsu K. Resistance to demethylation Inhibitors in Cercospora beticola, a pathogen of sugar beet in Japan, and development of unique Cross-resistance patterns. Eur. J. Plant Pathol. 2021;160:39–52. doi: 10.1007/s10658-021-02219-6. DOI
Georgopoulos S.G., Dovas C. A Serious outbreak of strains of Cercospora beticola resistant to benzimidazole fungicides in Northern Greece. Plant Dis. Report. 1973;57:321–324.
Karaoglanidis G.S., Ioannidis P.M., Thanassoulopoulos C.C. Reduced sensitivity of Cercospora beticola isolates to sterol-demethylation-inhibiting fungicides. Plant Pathol. 2000;49:567–572. doi: 10.1046/j.1365-3059.2000.00488.x. DOI
Trkulja N.R., Milosavljević A.G., Mitrović M.S., Jović J.B., Toševski I.T., Khan M.F., Secor G.A. Molecular and experimental evidence of multi-resistance of Cercospora beticola field populations to MBC, DMI and QoI fungicides. Eur. J. Plant Pathol. 2017;149:895–910. doi: 10.1007/s10658-017-1239-0. DOI
Zhang J., Li L., Lv Q., Yan L., Wang Y., Jiang Y. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019;10:691. doi: 10.3389/fmicb.2019.00691. PubMed DOI PMC
Ziogas B.N., Malandrakis A.A. Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management. Springer; Tokyo, Japan: 2015. Sterol biosynthesis inhibitors: C-14 demethylation (DMIs) pp. 199–216.
Spanner R., Taliadoros D., Richards J., Rivera-Varas V., Neubauer J., Natwick M., Hamilton O., Vaghefi N., Pethybridge S., Secor G.A. Genome-wide association and selective sweep studies reveal the complex genetic architecture of DMI fungicide resistance in Cercospora beticola. Genome Biol. Evol. 2021;13:evab209. doi: 10.1093/gbe/evab209. PubMed DOI PMC
Lucas J.A., Hawkins N.J., Fraaije B.A. Advances in Applied Microbiology. Volume 90. Academic Press; Cambridge, MA, USA: 2015. Chapter two—The evolution of fungicide resistance; pp. 29–92. PubMed
Ma Z., Proffer T.J., Jacobs J.L., Sundin G.W. Overexpression of the 14α-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl. Environ. Microbiol. 2006;72:2581–2585. doi: 10.1128/AEM.72.4.2581-2585.2006. PubMed DOI PMC
Hawkins N.J., Bass C., Dixon A., Neve P. The evolutionary origins of pesticide resistance. Biol. Rev. 2019;94:135–155. doi: 10.1111/brv.12440. PubMed DOI PMC
Marichal P., Bossche H.V., Odds F.C., Nobels G., Warnock D.W., Timmerman V., Broeckhoven C.V., Fay S., Mose-Larsen P. Molecular biological characterization of an azole-resistant Candida glabrata Isolate. Antimicrob. Agents Chemother. 1997;41:2229–2237. doi: 10.1128/AAC.41.10.2229. PubMed DOI PMC
Hu M., Chen S. Non-target site mechanisms of fungicide resistance in crop pathogens: A Review. Microorganisms. 2021;9:502. doi: 10.3390/microorganisms9030502. PubMed DOI PMC
Bolton M.D., Ebert M.K., Faino L., Rivera-Varas V., de Jonge R., Van de Peer Y., Thomma B.P., Secor G.A. RNA-sequencing of Cercospora beticola DMI-sensitive and resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genet. Biol. 2016;92:1–13. doi: 10.1016/j.fgb.2016.04.003. PubMed DOI
Nakaune R., Hamamoto H., Imada J., Akutsu K., Hibi T. A novel ABC transporter gene, PMR5, is involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Mol. Genet. Genomics. 2002;267:179–185. doi: 10.1007/s00438-002-0649-6. PubMed DOI
Schoonbeek H., Del Sorbo G., De Waard M.A. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol. Plant. Microbe Interact. 2001;14:562–571. doi: 10.1094/MPMI.2001.14.4.562. PubMed DOI
Deising H.B., Reimann S., Pascholati S.F. Mechanisms and significance of fungicide resistance. Braz. J. Microbiol. 2008;39:286–295. doi: 10.1590/S1517-83822008000200017. PubMed DOI PMC
Kitchen J.L., van den Bosch F., Paveley N.D., Helps J., van den Berg F. The evolution of fungicide resistance resulting from combinations of foliar-acting systemic seed treatments and foliar-applied fungicides: A modeling analysis. PLoS ONE. 2016;11:e0161887. doi: 10.1371/journal.pone.0161887. PubMed DOI PMC
Krug J.C. Biodiversity of fungi. Academic Press; Burlington, ON, USA: 2004. Moist chambers for the development of fungi; pp. 589–593.
Bolton M.D., Birla K., Rivera-Varas V., Rudolph K.D., Secor G.A. Characterization of CbCyp51 from field isolates of Cercospora beticola. Phytopathology. 2012;102:298–305. doi: 10.1094/PHYTO-07-11-0212. PubMed DOI
Wong F.P., Wilcox W.F. Sensitivity to azoxystrobin among isolates of Uncinula necator: Baseline distribution and relationship to myclobutanil sensitivity. Plant Dis. 2002;86:394–404. doi: 10.1094/PDIS.2002.86.4.394. PubMed DOI
Roy A., Palli S.R. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone Action. BMC Genomics. 2018;19:934. doi: 10.1186/s12864-018-5323-4. PubMed DOI PMC
Sen M.K., Hamouzová K., Mikulka J., Bharati R., Košnarová P., Hamouz P., Roy A., Soukup J. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis. Pest Manag. Sci. 2021;77:2122–2128. doi: 10.1002/ps.6241. PubMed DOI
Amir M., Mohammad T., Kumar V., Alajmi M.F., Rehman M., Hussain A., Alam P., Dohare R., Islam A., Ahmad F. Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Front. Mol. Biosci. 2019;6:41. doi: 10.3389/fmolb.2019.00041. PubMed DOI PMC
Mazumdar A., Haddad Y., Milosavljevic V., Michalkova H., Guran R., Bhowmick S., Moulick A. Peptide-carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic-resistant gram positive and gram negative pathogenic bacteria. Nanomaterials. 2020;10:325. doi: 10.3390/nano10020325. PubMed DOI PMC
Holtschulte B. Cercospora beticola–Worldwide distribution and incidence. Cercospora beticola. 2000;2:5–16.
Rossi V. Effect of host resistance in decreasing infection rate of Cercospora leaf spot epidemics on sugar beet. Phytopathol. Mediterr. 1995;34:149–156.
Jacobsen B.J., Franc G.D. Cercospora leaf spot. Compend. Beet Dis. Pests. 2009;2:7–10.
Rosenzweig N., Hanson L.E., Mambetova S., Jiang Q.W., Guza C., Stewart J., Somohano P. Fungicide sensitivity monitoring of Alternaria spp. causing leaf spot of sugar beet (Beta vulgaris) in the upper Great Lakes. Plant Dis. 2019;103:2263–2270. doi: 10.1094/PDIS-12-18-2282-RE. PubMed DOI
Nikou D., Malandrakis A., Konstantakaki M., Vontas J., Markoglou A., Ziogas B. Molecular characterization and detection of overexpressed C-14 alpha-demethylase-based DMI resistance in Cercospora beticola field isolates. Pestic. Biochem. Physiol. 2009;95:18–27. doi: 10.1016/j.pestbp.2009.04.014. DOI
Shrestha S., Neubauer J., Spanner R., Natwick M., Rios J., Metz N., Secor G.A., Bolton M.D. Rapid detection of Cercospora beticola in sugar beet and mutations associated with fungicide resistance using LAMP or probe-sased qPCR. Plant Dis. 2020;104:1654–1661. doi: 10.1094/PDIS-09-19-2023-RE. PubMed DOI
Robbertse B., Van Der Rijst M., Van Aarde I.M.R., Lennox C., Crous P.W. DMI sensitivity and cross-resistance patterns of Rhynchosporium secalis isolates from South Africa. Crop Prot. 2001;20:97–102. doi: 10.1016/S0261-2194(00)00061-2. DOI
Huf A., Rehfus A., Lorenz K.H., Bryson R., Voegele R.T., Stammler G. Proposal for a new nomenclature for CYP51 haplotypes in Zymoseptoria tritici and analysis of their distribution in Europe. Plant Pathol. 2018;67:1706–1712. doi: 10.1111/ppa.12891. DOI
Heick T.M., Justesen A.F., Jørgensen L.N. Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic Region-a status. Eur. J. Plant Pathol. 2017;149:669–682. doi: 10.1007/s10658-017-1216-7. DOI
Cools H.J., Mullins J.G., Fraaije B.A., Parker J.E., Kelly D.E., Lucas J.A., Kelly S.L. Impact of recently emerged sterol 14α-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Appl. Environ. Microbiol. 2011;77:3830–3837. doi: 10.1128/AEM.00027-11. PubMed DOI PMC
Hamamoto H., Hasegawa K., Nakaune R., Lee Y.J., Makizumi Y., Akutsu K., Hibi T. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase Gene (CYP51) in Penicillium digitatum. Appl. Environ. Microbiol. 2000;66:3421–3426. doi: 10.1128/AEM.66.8.3421-3426.2000. PubMed DOI PMC
Schnabel G., Jones A.L. The 14α-demethylase (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology. 2001;91:102–110. doi: 10.1094/PHYTO.2001.91.1.102. PubMed DOI
Prelich G. Gene overexpression: Uses, mechanisms, and interpretation. Genetics. 2012;190:841–854. doi: 10.1534/genetics.111.136911. PubMed DOI PMC
Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. doi: 10.1093/nar/gkv315. PubMed DOI PMC
Zhou Y., Chen L., Hu J., Duan H., Lin D., Liu P., Meng Q., Li B., Si N., Liu C., et al. Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronophythora litchii. Sci. Rep. 2015;5:17466. doi: 10.1038/srep17466. PubMed DOI PMC
Zhang C., Diao Y., Wang W., Hao J., Imran M., Duan H., Liu X. Assessing the risk for resistance and elucidating the genetics of Colletotrichum truncatum that is only sensitive to some DMI fungicides. Front. Microbiol. 2017;8:1779. doi: 10.3389/fmicb.2017.01779. PubMed DOI PMC
Matsumoto M., Ishida K., Konagai A., Maebashi K., Asaoka T. Strong antifungal activity of SS750, a new triazole derivative, is based on its selective binding affinity to cytochrome P450 of fungi. Antimicrob. Agents Chemother. 2002;46:308–314. doi: 10.1128/AAC.46.2.308-314.2002. PubMed DOI PMC
Wei L., Chen W., Zhao W., Wang J., Wang B., Li F., Wei M., Guo J., Chen C., Zheng J., et al. Mutations and overexpression of CYP51 associated with DMI-resistance in Colletotrichum gloeosporioides from chili. Plant Dis. 2019;104:668–676. doi: 10.1094/PDIS-08-19-1628-RE. PubMed DOI
Hubbard R.E., Haider M.K. Hydrogen bonds in proteins: Role and Strength. [(accessed on 22 October 2021)];eLS. 2010 Available online: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0003011.pub2. DOI
Mullins J.G.L., Parker J.E., Cools H.J., Togawa R.C., Lucas J.A., Fraaije B.A., Kelly D.E., Kelly S.L. Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS ONE. 2011;6:e20973. doi: 10.1371/journal.pone.0020973. PubMed DOI PMC
Chen S., Wang Y., Schnabel G., Peng C.A., Lagishetty S., Smith K., Luo C., Yuan H. Inherent resistance to 14α-demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology. 2018;108:1263–1275. doi: 10.1094/PHYTO-02-18-0054-R. PubMed DOI