Resistance of Streptococcus suis Isolates from the Czech Republic during 2018-2022
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RO0518
Ministry of Agriculture
QK1810193
Ministry of Agriculture
PubMed
36139993
PubMed Central
PMC9495191
DOI
10.3390/antibiotics11091214
PII: antibiotics11091214
Knihovny.cz E-resources
- Keywords
- antimicrobial susceptibility testing, infectious disease, minimal inhibitory concentration, pigs, serotypization,
- Publication type
- Journal Article MeSH
A determination of susceptibility/resistance to antimicrobials via serotype was carried out in 506 field isolates of Streptococcus suis, originating from pig farms in the Czech Republic in the period 2018-2022. A very high level of susceptibility of S. suis isolates was found to amoxicillin, in combination with clavulanic acid and sulfamethoxazole potentiated with trimethoprim. None of the tested isolates were resistant to these antimicrobial substances. Only two isolates were found to be intermediately resistant to enrofloxacin in 2020. With regard to ceftiofur, one isolate was intermediately resistant in 2020 and 2022, and two isolates were intermediately resistant in 2018 and 2021. A low level of resistance was detected to ampicillin (0.6% in 2021) and to florfenicol (1.15% in 2019; 1.3% in 2022). With regard to penicillin, a medium level of resistance was detected in 2018 (10.6%), but a low level of resistance was found in the following years (7.0% in 2019; 3.1% in 2020; 3.3% in 2021; 3.9% in 2022). On the contrary, a high or very high level of resistance was found to tetracycline (66.0% in 2018; 65.1% in 2019; 44.35% in 2020; 46.4% in 2021; 54.0% in 2022). Using molecular and serological methods, serotype 7 (16.4%) was determined to be predominant among S. suis isolates, followed by serotypes 1/2, 2, 9, 4, 3, 1, 29, 16, and 31 (10.7%; 8.5%; 5.7%; 5.5%; 4.5%; 4.3%; 3.6%; 3.4%; 3.4%, respectively). Other serotypes were identified among the investigated strains either rarely (up to 10 cases) or not at all. A relatively high percentage of isolates were detected as non-typeable (79 isolates; 15.6%). Dependence of resistance upon serotype assignment could not be proven in all but serotype 31, wherein all isolates (n = 17) were resistant or intermediately resistant to clindamycin, tilmycosin, tulathromycin, and tetracycline. The resistance to clindamycin and tetracycline may be related to the high consumption of these antibiotics on pig farms at present or in previous years. Macrolides (tilmicosin and tulathromycin) and tiamulin are not suitable for the treatment of streptococcal infections, but are used on pig farms to treat respiratory infections caused by gram-negative bacteria, so they were included in the study.
State Veterinary Institute Rantirovska 93 586 05 Jihlava Czech Republic
Veterinary Research Institute Hudcova 296 70 621 00 Brno Czech Republic
See more in PubMed
Tan M.F., Tan J., Zeng Y.B., Li H.Q., Yang Q., Zhou R. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangchi Province, China. J. Appl. Microbiol. 2020;130:797–806. doi: 10.1111/jam.14831. PubMed DOI
Goyette-Desjardins G., Auger J.P., Xu J., Segura M., Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microb. Infect. 2014;3:e45. doi: 10.1038/emi.2014.45. PubMed DOI PMC
Staats J.J., Feder I., Okwumabua O., Chengappa M.M. Streptococcus suis: Past and present. Vet. Res. Commun. 1997;21:381–407. doi: 10.1023/A:1005870317757. PubMed DOI
Varela N.P., Gadbois P., Thibault C., Gottschalk M., Dick P., Wilson J. Antimicrobial resistance and prudent drug use for Streptococcus suis. Anim. Health Res. Rev. 2013;14:68–77. doi: 10.1017/S1466252313000029. PubMed DOI
Devi M., Dutta J.B., Rajkhowa S., Kalita D., Saikia G.K., Das B.C., Hazarika R.A., Mahato G. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati. India Vet. World. 2017;10:556–561. doi: 10.14202/vetworld.2017.556-561. PubMed DOI PMC
Yongkiettrakul S., Maneerat K., Arechanajan B., Malila Y., Srimanote P., Gottschalk M., Visessanguan W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet. Res. 2019;15:5. doi: 10.1186/s12917-018-1732-5. PubMed DOI PMC
El Garch F., de Jong A., Simjee S., Moyaert H., Klein U., Ludwig C., Marion H., Haag-Diergarten S., Richard-Mazet A., Thomas V., et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe. 2009–2012: VetPath results. Vet. Microbiol. 2016;194:11–22. doi: 10.1016/j.vetmic.2016.04.009. PubMed DOI
Perch B., Pedersen K.B., Heinrichsen J. Serology of capsulated streptococci pathogenic for pigs: Six new serotypes of Streptococcus suis. J. Clin. Microbiol. 1983;17:993–996. doi: 10.1128/jcm.17.6.993-996.1983. PubMed DOI PMC
Gottschalk M., Higgins R., Jacques M., Mittal K.R., Henrichsen J. Description of 14 new capsular types of Streptococcus suis. J. Clin. Microbiol. 1989;27:2633–2635. doi: 10.1128/jcm.27.12.2633-2636.1989. PubMed DOI PMC
Gottschalk M., Higgins R., Jacques M., Beaudoin M., Henrichsen J. Characterization of six new capsular types (23 through 28) of Streptococcus suis. J. Clin. Microbiol. 1991;29:2590–2594. doi: 10.1128/jcm.29.11.2590-2594.1991. PubMed DOI PMC
Higgins R., Gottschalk M., Boudreau M., Lebrun A., Henrichsen J. Description of six new capsular types (29–34) of Streptococcus suis. J. Vet. Diagn. Investig. 1995;7:405–406. doi: 10.1177/104063879500700322. PubMed DOI
Hill J.E., Gottschalk M., Brousseau R., Harel J., Hemmingsen S.M., Goh S.H. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34. isolated from pigs. are Streptococcus orisratti. Vet. Microbiol. 2005;107:63–69. doi: 10.1016/j.vetmic.2005.01.003. PubMed DOI
Le Tien H.T., Nishibori T., Nishitani Y., Nomoto R., Osawa R. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22, 26, and 33 based on DNA-DNA homology and sodA and recN phylogenies. Vet. Microbiol. 2013;162:842–849. doi: 10.1016/j.vetmic.2012.11.001. PubMed DOI
Okura M., Lachance C., Osaki M., Sekizaki T., Maruyama F., Nozawa T., Nakagawa I., Hamada S., Rossignol C., Gottschalk M., et al. Development of a two-step multiplex PCR assay for typing of capsular polysaccharide synthesis gene clusters of Streptococcus suis. J. Clin. Microbiol. 2014;52:1714–1719. doi: 10.1128/JCM.03411-13. PubMed DOI PMC
Higgins R., Gottschalk M. An update on Streptococcus suis identification. J. Vet. Diagn. Investig. 1990;2:249–252. doi: 10.1177/104063879000200324. PubMed DOI
Liu Z., Zheng H., Gottschalk M., Bai X., Lan R., Ji S., Liu H., Xu J. Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS ONE. 2013;8:e72070. doi: 10.1371/journal.pone.0072070. PubMed DOI PMC
Gottschalk M., Higgins R., Boudreau M. Use of polyvalent coagglutination reagents for serotyping of Streptococcus suis. J. Clin. Microbiol. 1993;31:2192–2194. doi: 10.1128/jcm.31.8.2192-2194.1993. PubMed DOI PMC
Gottschalk M., Segura M., Xu J. Streptococcus suis infections in humans: The Chinese experience and the situation in North America. Anim. Health Res. Rev. 2007;8:29–45. doi: 10.1017/S1466252307001247. PubMed DOI
Athey T.B., Teatero S., Lacouture S., Takamatsu D., Gottschalk M., Fittipaldi N. Determining Streptococcus suis serotype from short-read whole-genome sequencing data. BMC Microbiol. 2016;16:162. doi: 10.1186/s12866-016-0782-8. PubMed DOI PMC
Matiasovic J., Zouharova M., Nedbalcova K., Kralova N., Matiaskova K., Simek B., Kucharovicova I., Gottschalk M. Resolution of Streptococcus suis serotypes ½ versus 2 and 1 versus 14 by PCR-restriction fragment lenght polymorphism method. J. Clin. Microbiol. 2020;58:e00480-20. doi: 10.1128/JCM.00480-20. PubMed DOI PMC
Vela A.I., Moreno M.A., Cebolla J.A., Gonzales S., Latre M.V., Dominguez L., Fernandez-Garayzabal J.F. Antimicrobial susceptibility of clinical strains of Streptococcus suis isolated from pigs in Spain. Vet. Microbiol. 2005;105:143–147. doi: 10.1016/j.vetmic.2004.10.009. PubMed DOI
Hernandes-Garcia J., Wang J., Restif O., Holmes M.A., Mather A.E., Weinert L.A., Wileman T.M., Thomson J.R., Langford P.R., Wren B.W., et al. Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014. Vet. Microbiol. 2017;207:117–124. doi: 10.1016/j.vetmic.2017.06.002. PubMed DOI PMC
Zhang C., Zhang P., Wang Y., Fu L., Liu L., Xu D., Hou Y., Li Y., Fu M., Wang X., et al. Capsular serotypes, antimicrobial susceptibility, and the presence of transferable oxazolidinone resistance genes in Streptococcus suis isolated from healthy pigs in China. Vet. Microbiol. 2020;247:108750. doi: 10.1016/j.vetmic.2020.108750. PubMed DOI
Lunha K., Chumpol W., Samngammim S., Jiemsup S., Assavacheep P., Yongkiettrakul S. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs in Thailand, 2018–2020. Antibiotics. 2022;11:410. doi: 10.3390/antibiotics11030410. PubMed DOI PMC
Burch D.G.S., Duran C.O., Aarestrup F.M. Guidelines for antimicrobial use in swine. In: Guardabassi L., Jensen L.B., Kruse H., editors. Guide to Antimicrobial Use in Animals. Blackwell Publishing; Oxford, UK: 2008. pp. 102–125.
Charpentier X., Polard P., Claverys J.P. Induction of competence for genetic transformation by antibiotics: Convergent evolution of stress responses in distant bacterial species lacking SOS? Curr. Opin. Microbiol. 2012;15:570–576. doi: 10.1016/j.mib.2012.08.001. PubMed DOI
Lerminiaux N.A., Cameron A.D.S. Horizontal transfeer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019;65:34–44. doi: 10.1139/cjm-2018-0275. PubMed DOI
Gottschalk M., Xu J., Calzas C., Segura M. Streptococcus suis: A new emerging or an old neglected zoonotic pathogen? Future Microbiol. 2010;5:371–391. doi: 10.2217/fmb.10.2. PubMed DOI
Correa-Fiz F., Neila-Ibanez C., Lopez-Soria S., Napp S., Martinez B., Sobervia L., Tibble S., Aragon V., Migura-Garcia L. Feed additives for the control of post-weaning Streptococcus suis disease and the effect on the faecal and nasal microbiota. Sci. Rep. 2020;10:20354. PubMed PMC
Wisselink H.J., Veldman K.T., van den Eede C., Salmon S.A., Mevius D.J. Quantitative susceptibility of Streptococcus suis strains isolated from diseased pigs in seven European countries to antimicrobial agents licenced in veterinary medicine. Vet. Microbiol. 2006;113:73–82. doi: 10.1016/j.vetmic.2005.10.035. PubMed DOI
De Jong A., Thomas V., Simjee S., Moyaert H., El Garch F., Mahler K., Morrissey I., Butty P., Klein U., Marion H., et al. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: The VetPath study. Vet. Microbiol. 2014;172:202–215. doi: 10.1016/j.vetmic.2014.04.008. PubMed DOI
Heuvelink A.E., van Hout A.J., Gonggrijp M. Monitoring of antimicrobialsusceptibility of swine respiratory pathogens in The Netherlands, 2012–2014; Proceedings of the 6th Symposium on Antimicrobial Resistance in Animals and the Environment (ARAE); Tours, France. 29 June–1 July 2015; p. 98. Poster P34.
Hendriksen R.S., Mevius D.J., Schroeter A., Teale C., Jouy E., Butaye P., Franco A., Utinane A., Amado A., Moreno M., et al. Occurence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: The ARBAO-II study. Acta Vet. Scand. 2008;50:19. PubMed PMC
Riley B.R., Chidgey K.L., Bridges J.P., Gordon E., Lawrence K.E. Isolates, antimicrobial susceptibility profiles and multidrug resistance of bacteria cultured from pig submissions in New Zealand. Animals. 2020;10:1427. doi: 10.3390/ani10081427. PubMed DOI PMC
Werinder A., Aspan A., Backhans A., Sjolund M., Guss B., Jacobson B. Streptococcus suis in Swedish grower pigs: Occurence, serotypes, and antimicrobial susceptibility. Acta Vet. Scand. 2020;62:36. doi: 10.1186/s13028-020-00533-3. PubMed DOI PMC
Kerdsin A., Akeda Y., Hatrongjit R., Detchawna U., Sekizaki T., Hamada S., Gottschalk M., Oishi K. Streptococcus suis serotyping by a new multiplex PCR. J. Med. Microbiol. 2014;63:824–830. doi: 10.1099/jmm.0.069757-0. PubMed DOI
Ishida S., Tien Le H.T., Osawa R., Tohya M., Nomoto R., Kawamura Y., Takahashi T., Kikuchi N., Kikuchi K., Sekizaki T. Development of an appropriate PCR system for the reclassification of Streptococcus suis. J. Microbiol. Methods. 2014;107:66–70. doi: 10.1016/j.mimet.2014.09.003. PubMed DOI
Lakkitjaroen N., Takamatsu D., Okura M., Sato M., Osaki M., Sekizaki T. Loss of capsule among Streptococcus suis isolates from porcine endocarditis and its biological significance. J. Med. Microbiol. 2011;60:1669–1676. doi: 10.1099/jmm.0.034686-0. PubMed DOI
Zhang C., Zhang Z., Song L., Fan X., Wen F., Xu S., Ning Y. Antimicrobial resistance profile and genotypic characteristics of Streptococcus suis capsular type 2 isolated from clinical carrier sows and diseased pigs in China. Biomed. Res. Int. 2015;2015:284303. PubMed PMC
Prufer T.L., Rohde J., Verspohl J., Rohde M., de Greeff A., Willenborg J., Valentin-Weigand P. Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996–2016. PLoS ONE. 2019;14:e0210801. doi: 10.1371/journal.pone.0210801. PubMed DOI PMC
Segura M., Aragon V., Brockmeier S.L., Gebhart C., Greeff A., Kerdsin A., O’Dea M.A., Okura M., Saléry M., Schultsz C., et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th International Workshop on S. suis. Pathogens. 2020;9:374. doi: 10.3390/pathogens9050374. PubMed DOI PMC
Kerdsin A., Takeuchi D., Nuangmek A., Akeda Y., Gottschalk M., Oishi K. Genotypic comparison between Streptococcus suis isolated from pigs and humans in Thailand. Pathogens. 2020;9:50. doi: 10.3390/pathogens9010050. PubMed DOI PMC
Mittal K.R., Higgins R., Larivière S. Identification and serotyping of Haemophilus pleuropneumoniae by coagglutination test. J. Clin. Microbiol. 1983;18:1351–1354. doi: 10.1128/jcm.18.6.1351-1354.1983. PubMed DOI PMC
CLSI . CLSI Supplement VET08. 4th ed. Clinical and Laboratory Standards Institute (CLSI); Wayne, PA, USA: 2018. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals.170p
Jones R.N., Pfaller M.A., Rhomberg P.R., Walter D.H. Tiamulin activity against fastidious and nonfastidious veterinary and human bacterial isolates: Initial development of in vitro susceptibility test methods. J. Clin. Microbiol. 2002;40:461–465. doi: 10.1128/JCM.40.2.461-465.2002. PubMed DOI PMC
CLSI . CLSI Document VET01-A4—Approved Standard. 4th ed. Clinical and Laboratory Standards Institute (CLSI); Wayne, PA, USA: 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals.70p
Schwarz S., Silley P., Simjee S., Woodford N., van Duijkeren E., Johnson A.P., Gaastra W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010;141:601–604. doi: 10.1016/j.vetmic.2009.12.013. PubMed DOI