• This record comes from PubMed

Resistance of Streptococcus suis Isolates from the Czech Republic during 2018-2022

. 2022 Sep 07 ; 11 (9) : . [epub] 20220907

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RO0518 Ministry of Agriculture
QK1810193 Ministry of Agriculture

Links

PubMed 36139993
PubMed Central PMC9495191
DOI 10.3390/antibiotics11091214
PII: antibiotics11091214
Knihovny.cz E-resources

A determination of susceptibility/resistance to antimicrobials via serotype was carried out in 506 field isolates of Streptococcus suis, originating from pig farms in the Czech Republic in the period 2018-2022. A very high level of susceptibility of S. suis isolates was found to amoxicillin, in combination with clavulanic acid and sulfamethoxazole potentiated with trimethoprim. None of the tested isolates were resistant to these antimicrobial substances. Only two isolates were found to be intermediately resistant to enrofloxacin in 2020. With regard to ceftiofur, one isolate was intermediately resistant in 2020 and 2022, and two isolates were intermediately resistant in 2018 and 2021. A low level of resistance was detected to ampicillin (0.6% in 2021) and to florfenicol (1.15% in 2019; 1.3% in 2022). With regard to penicillin, a medium level of resistance was detected in 2018 (10.6%), but a low level of resistance was found in the following years (7.0% in 2019; 3.1% in 2020; 3.3% in 2021; 3.9% in 2022). On the contrary, a high or very high level of resistance was found to tetracycline (66.0% in 2018; 65.1% in 2019; 44.35% in 2020; 46.4% in 2021; 54.0% in 2022). Using molecular and serological methods, serotype 7 (16.4%) was determined to be predominant among S. suis isolates, followed by serotypes 1/2, 2, 9, 4, 3, 1, 29, 16, and 31 (10.7%; 8.5%; 5.7%; 5.5%; 4.5%; 4.3%; 3.6%; 3.4%; 3.4%, respectively). Other serotypes were identified among the investigated strains either rarely (up to 10 cases) or not at all. A relatively high percentage of isolates were detected as non-typeable (79 isolates; 15.6%). Dependence of resistance upon serotype assignment could not be proven in all but serotype 31, wherein all isolates (n = 17) were resistant or intermediately resistant to clindamycin, tilmycosin, tulathromycin, and tetracycline. The resistance to clindamycin and tetracycline may be related to the high consumption of these antibiotics on pig farms at present or in previous years. Macrolides (tilmicosin and tulathromycin) and tiamulin are not suitable for the treatment of streptococcal infections, but are used on pig farms to treat respiratory infections caused by gram-negative bacteria, so they were included in the study.

See more in PubMed

Tan M.F., Tan J., Zeng Y.B., Li H.Q., Yang Q., Zhou R. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangchi Province, China. J. Appl. Microbiol. 2020;130:797–806. doi: 10.1111/jam.14831. PubMed DOI

Goyette-Desjardins G., Auger J.P., Xu J., Segura M., Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microb. Infect. 2014;3:e45. doi: 10.1038/emi.2014.45. PubMed DOI PMC

Staats J.J., Feder I., Okwumabua O., Chengappa M.M. Streptococcus suis: Past and present. Vet. Res. Commun. 1997;21:381–407. doi: 10.1023/A:1005870317757. PubMed DOI

Varela N.P., Gadbois P., Thibault C., Gottschalk M., Dick P., Wilson J. Antimicrobial resistance and prudent drug use for Streptococcus suis. Anim. Health Res. Rev. 2013;14:68–77. doi: 10.1017/S1466252313000029. PubMed DOI

Devi M., Dutta J.B., Rajkhowa S., Kalita D., Saikia G.K., Das B.C., Hazarika R.A., Mahato G. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati. India Vet. World. 2017;10:556–561. doi: 10.14202/vetworld.2017.556-561. PubMed DOI PMC

Yongkiettrakul S., Maneerat K., Arechanajan B., Malila Y., Srimanote P., Gottschalk M., Visessanguan W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet. Res. 2019;15:5. doi: 10.1186/s12917-018-1732-5. PubMed DOI PMC

El Garch F., de Jong A., Simjee S., Moyaert H., Klein U., Ludwig C., Marion H., Haag-Diergarten S., Richard-Mazet A., Thomas V., et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe. 2009–2012: VetPath results. Vet. Microbiol. 2016;194:11–22. doi: 10.1016/j.vetmic.2016.04.009. PubMed DOI

Perch B., Pedersen K.B., Heinrichsen J. Serology of capsulated streptococci pathogenic for pigs: Six new serotypes of Streptococcus suis. J. Clin. Microbiol. 1983;17:993–996. doi: 10.1128/jcm.17.6.993-996.1983. PubMed DOI PMC

Gottschalk M., Higgins R., Jacques M., Mittal K.R., Henrichsen J. Description of 14 new capsular types of Streptococcus suis. J. Clin. Microbiol. 1989;27:2633–2635. doi: 10.1128/jcm.27.12.2633-2636.1989. PubMed DOI PMC

Gottschalk M., Higgins R., Jacques M., Beaudoin M., Henrichsen J. Characterization of six new capsular types (23 through 28) of Streptococcus suis. J. Clin. Microbiol. 1991;29:2590–2594. doi: 10.1128/jcm.29.11.2590-2594.1991. PubMed DOI PMC

Higgins R., Gottschalk M., Boudreau M., Lebrun A., Henrichsen J. Description of six new capsular types (29–34) of Streptococcus suis. J. Vet. Diagn. Investig. 1995;7:405–406. doi: 10.1177/104063879500700322. PubMed DOI

Hill J.E., Gottschalk M., Brousseau R., Harel J., Hemmingsen S.M., Goh S.H. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34. isolated from pigs. are Streptococcus orisratti. Vet. Microbiol. 2005;107:63–69. doi: 10.1016/j.vetmic.2005.01.003. PubMed DOI

Le Tien H.T., Nishibori T., Nishitani Y., Nomoto R., Osawa R. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22, 26, and 33 based on DNA-DNA homology and sodA and recN phylogenies. Vet. Microbiol. 2013;162:842–849. doi: 10.1016/j.vetmic.2012.11.001. PubMed DOI

Okura M., Lachance C., Osaki M., Sekizaki T., Maruyama F., Nozawa T., Nakagawa I., Hamada S., Rossignol C., Gottschalk M., et al. Development of a two-step multiplex PCR assay for typing of capsular polysaccharide synthesis gene clusters of Streptococcus suis. J. Clin. Microbiol. 2014;52:1714–1719. doi: 10.1128/JCM.03411-13. PubMed DOI PMC

Higgins R., Gottschalk M. An update on Streptococcus suis identification. J. Vet. Diagn. Investig. 1990;2:249–252. doi: 10.1177/104063879000200324. PubMed DOI

Liu Z., Zheng H., Gottschalk M., Bai X., Lan R., Ji S., Liu H., Xu J. Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS ONE. 2013;8:e72070. doi: 10.1371/journal.pone.0072070. PubMed DOI PMC

Gottschalk M., Higgins R., Boudreau M. Use of polyvalent coagglutination reagents for serotyping of Streptococcus suis. J. Clin. Microbiol. 1993;31:2192–2194. doi: 10.1128/jcm.31.8.2192-2194.1993. PubMed DOI PMC

Gottschalk M., Segura M., Xu J. Streptococcus suis infections in humans: The Chinese experience and the situation in North America. Anim. Health Res. Rev. 2007;8:29–45. doi: 10.1017/S1466252307001247. PubMed DOI

Athey T.B., Teatero S., Lacouture S., Takamatsu D., Gottschalk M., Fittipaldi N. Determining Streptococcus suis serotype from short-read whole-genome sequencing data. BMC Microbiol. 2016;16:162. doi: 10.1186/s12866-016-0782-8. PubMed DOI PMC

Matiasovic J., Zouharova M., Nedbalcova K., Kralova N., Matiaskova K., Simek B., Kucharovicova I., Gottschalk M. Resolution of Streptococcus suis serotypes ½ versus 2 and 1 versus 14 by PCR-restriction fragment lenght polymorphism method. J. Clin. Microbiol. 2020;58:e00480-20. doi: 10.1128/JCM.00480-20. PubMed DOI PMC

Vela A.I., Moreno M.A., Cebolla J.A., Gonzales S., Latre M.V., Dominguez L., Fernandez-Garayzabal J.F. Antimicrobial susceptibility of clinical strains of Streptococcus suis isolated from pigs in Spain. Vet. Microbiol. 2005;105:143–147. doi: 10.1016/j.vetmic.2004.10.009. PubMed DOI

Hernandes-Garcia J., Wang J., Restif O., Holmes M.A., Mather A.E., Weinert L.A., Wileman T.M., Thomson J.R., Langford P.R., Wren B.W., et al. Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014. Vet. Microbiol. 2017;207:117–124. doi: 10.1016/j.vetmic.2017.06.002. PubMed DOI PMC

Zhang C., Zhang P., Wang Y., Fu L., Liu L., Xu D., Hou Y., Li Y., Fu M., Wang X., et al. Capsular serotypes, antimicrobial susceptibility, and the presence of transferable oxazolidinone resistance genes in Streptococcus suis isolated from healthy pigs in China. Vet. Microbiol. 2020;247:108750. doi: 10.1016/j.vetmic.2020.108750. PubMed DOI

Lunha K., Chumpol W., Samngammim S., Jiemsup S., Assavacheep P., Yongkiettrakul S. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs in Thailand, 2018–2020. Antibiotics. 2022;11:410. doi: 10.3390/antibiotics11030410. PubMed DOI PMC

Burch D.G.S., Duran C.O., Aarestrup F.M. Guidelines for antimicrobial use in swine. In: Guardabassi L., Jensen L.B., Kruse H., editors. Guide to Antimicrobial Use in Animals. Blackwell Publishing; Oxford, UK: 2008. pp. 102–125.

Charpentier X., Polard P., Claverys J.P. Induction of competence for genetic transformation by antibiotics: Convergent evolution of stress responses in distant bacterial species lacking SOS? Curr. Opin. Microbiol. 2012;15:570–576. doi: 10.1016/j.mib.2012.08.001. PubMed DOI

Lerminiaux N.A., Cameron A.D.S. Horizontal transfeer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019;65:34–44. doi: 10.1139/cjm-2018-0275. PubMed DOI

Gottschalk M., Xu J., Calzas C., Segura M. Streptococcus suis: A new emerging or an old neglected zoonotic pathogen? Future Microbiol. 2010;5:371–391. doi: 10.2217/fmb.10.2. PubMed DOI

Correa-Fiz F., Neila-Ibanez C., Lopez-Soria S., Napp S., Martinez B., Sobervia L., Tibble S., Aragon V., Migura-Garcia L. Feed additives for the control of post-weaning Streptococcus suis disease and the effect on the faecal and nasal microbiota. Sci. Rep. 2020;10:20354. PubMed PMC

Wisselink H.J., Veldman K.T., van den Eede C., Salmon S.A., Mevius D.J. Quantitative susceptibility of Streptococcus suis strains isolated from diseased pigs in seven European countries to antimicrobial agents licenced in veterinary medicine. Vet. Microbiol. 2006;113:73–82. doi: 10.1016/j.vetmic.2005.10.035. PubMed DOI

De Jong A., Thomas V., Simjee S., Moyaert H., El Garch F., Mahler K., Morrissey I., Butty P., Klein U., Marion H., et al. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: The VetPath study. Vet. Microbiol. 2014;172:202–215. doi: 10.1016/j.vetmic.2014.04.008. PubMed DOI

Heuvelink A.E., van Hout A.J., Gonggrijp M. Monitoring of antimicrobialsusceptibility of swine respiratory pathogens in The Netherlands, 2012–2014; Proceedings of the 6th Symposium on Antimicrobial Resistance in Animals and the Environment (ARAE); Tours, France. 29 June–1 July 2015; p. 98. Poster P34.

Hendriksen R.S., Mevius D.J., Schroeter A., Teale C., Jouy E., Butaye P., Franco A., Utinane A., Amado A., Moreno M., et al. Occurence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: The ARBAO-II study. Acta Vet. Scand. 2008;50:19. PubMed PMC

Riley B.R., Chidgey K.L., Bridges J.P., Gordon E., Lawrence K.E. Isolates, antimicrobial susceptibility profiles and multidrug resistance of bacteria cultured from pig submissions in New Zealand. Animals. 2020;10:1427. doi: 10.3390/ani10081427. PubMed DOI PMC

Werinder A., Aspan A., Backhans A., Sjolund M., Guss B., Jacobson B. Streptococcus suis in Swedish grower pigs: Occurence, serotypes, and antimicrobial susceptibility. Acta Vet. Scand. 2020;62:36. doi: 10.1186/s13028-020-00533-3. PubMed DOI PMC

Kerdsin A., Akeda Y., Hatrongjit R., Detchawna U., Sekizaki T., Hamada S., Gottschalk M., Oishi K. Streptococcus suis serotyping by a new multiplex PCR. J. Med. Microbiol. 2014;63:824–830. doi: 10.1099/jmm.0.069757-0. PubMed DOI

Ishida S., Tien Le H.T., Osawa R., Tohya M., Nomoto R., Kawamura Y., Takahashi T., Kikuchi N., Kikuchi K., Sekizaki T. Development of an appropriate PCR system for the reclassification of Streptococcus suis. J. Microbiol. Methods. 2014;107:66–70. doi: 10.1016/j.mimet.2014.09.003. PubMed DOI

Lakkitjaroen N., Takamatsu D., Okura M., Sato M., Osaki M., Sekizaki T. Loss of capsule among Streptococcus suis isolates from porcine endocarditis and its biological significance. J. Med. Microbiol. 2011;60:1669–1676. doi: 10.1099/jmm.0.034686-0. PubMed DOI

Zhang C., Zhang Z., Song L., Fan X., Wen F., Xu S., Ning Y. Antimicrobial resistance profile and genotypic characteristics of Streptococcus suis capsular type 2 isolated from clinical carrier sows and diseased pigs in China. Biomed. Res. Int. 2015;2015:284303. PubMed PMC

Prufer T.L., Rohde J., Verspohl J., Rohde M., de Greeff A., Willenborg J., Valentin-Weigand P. Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996–2016. PLoS ONE. 2019;14:e0210801. doi: 10.1371/journal.pone.0210801. PubMed DOI PMC

Segura M., Aragon V., Brockmeier S.L., Gebhart C., Greeff A., Kerdsin A., O’Dea M.A., Okura M., Saléry M., Schultsz C., et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th International Workshop on S. suis. Pathogens. 2020;9:374. doi: 10.3390/pathogens9050374. PubMed DOI PMC

Kerdsin A., Takeuchi D., Nuangmek A., Akeda Y., Gottschalk M., Oishi K. Genotypic comparison between Streptococcus suis isolated from pigs and humans in Thailand. Pathogens. 2020;9:50. doi: 10.3390/pathogens9010050. PubMed DOI PMC

Mittal K.R., Higgins R., Larivière S. Identification and serotyping of Haemophilus pleuropneumoniae by coagglutination test. J. Clin. Microbiol. 1983;18:1351–1354. doi: 10.1128/jcm.18.6.1351-1354.1983. PubMed DOI PMC

CLSI . CLSI Supplement VET08. 4th ed. Clinical and Laboratory Standards Institute (CLSI); Wayne, PA, USA: 2018. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals.170p

Jones R.N., Pfaller M.A., Rhomberg P.R., Walter D.H. Tiamulin activity against fastidious and nonfastidious veterinary and human bacterial isolates: Initial development of in vitro susceptibility test methods. J. Clin. Microbiol. 2002;40:461–465. doi: 10.1128/JCM.40.2.461-465.2002. PubMed DOI PMC

CLSI . CLSI Document VET01-A4—Approved Standard. 4th ed. Clinical and Laboratory Standards Institute (CLSI); Wayne, PA, USA: 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals.70p

Schwarz S., Silley P., Simjee S., Woodford N., van Duijkeren E., Johnson A.P., Gaastra W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010;141:601–604. doi: 10.1016/j.vetmic.2009.12.013. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...