Pyroxsulam Resistance in Apera spica-venti: An Emerging Challenge in Crop Protection
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QL24010167
National Agency for Agricultural Research (NAZV)
PubMed
39795334
PubMed Central
PMC11722645
DOI
10.3390/plants14010074
PII: plants14010074
Knihovny.cz E-resources
- Keywords
- ALS-inhibiting herbicide, GSTs, cytochrome P450s, non-target-site resistance, selection pressure,
- Publication type
- Journal Article MeSH
Apera spica-venti, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of A. spica-venti resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.69 and 141.65, respectively. Pre-treatment with malathion reduced RF by 2.40× and 1.25× in R1 and R2, indicating the potential involvement of cytochrome P450 (CytP450). NBD-Cl pre-treatment decreased RF only in R2, suggesting possible GST involvement. Gene analysis revealed no mutations (at previously reported sites) or overexpression in the acetolactate synthase (ALS) gene. However, a significant difference in ALS enzyme activity between resistant and susceptible biotypes points to target-site resistance mechanisms. Studies with 14C-labeled pyroxsulam showed that reduced absorption and translocation were not likely resistance mechanisms. In summary, herbicide resistance in A. spica-venti appears to result from multiple mechanisms. Possible causes include target-site resistance from an unidentified ALS mutation (within coding or regulatory regions). Enhanced herbicide metabolism via CytP450s and GSTs is also a contributing factor. Further experimental validation is needed to confirm these mechanisms and fully understand the resistance. This evolution underscores the adaptive capacity of weed populations under herbicide pressure, emphasizing the need for alternative control strategies.
See more in PubMed
Košnarová P., Hamouz P., Hamouzová K., Linn A., Sen M.K., Mikulka J., Soukup J. Apera spica-venti in the Czech Republic Develops Resistance to Three Herbicide Modes of Action. Weed Res. 2021;61:420–429. doi: 10.1111/wre.12500. DOI
Hamouzová K., Soukup J., Jursík M., Hamouz P., Venclová V., Tůmová P. Cross-Resistance to Three Frequently Used Sulfonylurea Herbicides in Populations of Apera spica-venti from the Czech Republic. Weed Res. 2011;51:113–122. doi: 10.1111/j.1365-3180.2010.00828.x. DOI
Massa D., Krenz B., Gerhards R. Target-Site Resistance to ALS-Inhibiting Herbicides in Apera spica-venti Populations Is Conferred by Documented and Previously Unknown Mutations. Weed Res. 2011;51:294–303. doi: 10.1111/j.1365-3180.2011.00843.x. DOI
Babineau M., Mathiassen S.K., Kristensen M., Holst N., Beffa R., Kudsk P. Spatial Distribution of Acetolactate Synthase Resistance Mechanisms in Neighboring Populations of Silky Windgrass (Apera spica-venti) Weed Sci. 2017;65:479–490. doi: 10.1017/wsc.2017.11. DOI
Massa D., Kaiser Y.I., Andújar-Sánchez D., Carmona-Alférez R., Mehrtens J., Gerhards R. Development of a Geo-Referenced Database for Weed Mapping and Analysis of Agronomic Factors Affecting Herbicide Resistance in Apera spica-venti L. Beauv. (Silky Windgrass) Agronomy. 2013;3:13–27. doi: 10.3390/agronomy3010013. DOI
Hamouzová K., Košnarová P., Salava J., Soukup J., Hamouz P. Mechanisms of Resistance to Acetolactate Synthase-Inhibiting Herbicides in Populations of Apera spica-venti from the Czech Republic. Pest Manag. Sci. 2014;70:541–548. doi: 10.1002/ps.3563. PubMed DOI
Hulme P.E. Potential Risks of Future Herbicide-Resistant Weeds in New Zealand Revealed through Machine Learning. N. Z. J. Agric. Res. 2024;67:17–27. doi: 10.1080/00288233.2023.2210288. DOI
Auškalnienė O., Kadžienė G., Stefanovičienė R., Jomantaitė B. Development of Herbicides Resistance in Apera spica-venti in Lithuania. Zemdirbyste-Agric. 2020;107:71–76. doi: 10.13080/z-a.2020.107.013. DOI
Schulz A., Mathiassen S.K., de Mol F. Approaches to Early Detection of Herbicide Resistance in Apera spica-venti Regarding Intra- and Inter-Field Situations. J. Plant Dis. Prot. 2014;121:138–148. doi: 10.1007/BF03356502. DOI
Adamczewski K., Matysiak K. The Mechanism of Resistance to ALS-Inhibiting Herbicides in Biotypes of Wind Bent Grass (Apera spica-venti L.) with Cross and Multiple Resistance. Pol. J. Agron. 2012;10:3–8.
Heap I. The International Herbicide-Resistant Weed Database. Online. Friday, 15 December 2023. [(accessed on 15 December 2023)]. Available online: www.weedscience.org.
Torra J., Alcántara-De La Cruz R. Molecular Mechanisms of Herbicide Resistance in Weeds. Genes. 2022;13:2025. doi: 10.3390/genes13112025. PubMed DOI PMC
Gaines T.A., Duke S.O., Morran S., Rigon C.A.G., Tranel P.J., Küpper A., Dayan F.E. Mechanisms of Evolved Herbicide Resistance. J. Biol. Chem. 2020;295:10307–10330. doi: 10.1074/jbc.REV120.013572. PubMed DOI PMC
De la Cruz R.A., Da Silva Amaral G., Mendes K.F., Rojano-Delgado A.M., De Prado R. Radioisotopes in Weed Research. CRC Press; Boca Raton, FL, USA: 2020. Absorption, Translocation, and Metabolism Studies of Herbicides in Weeds and Crops; pp. 127–154.
Goldberg-Cavalleri A., Onkokesung N., Franco-Ortega S., Edwards R. ABC Transporters Linked to Multiple Herbicide Resistance in Alopecurus myosuroides. Front. Plant Sci. 2023;14:1082761. doi: 10.3389/fpls.2023.1082761. PubMed DOI PMC
Wang J., Cao W., Guo Q., Yang Y., Bai L., Pan L. Resistance to Mesosulfuron-Methyl in Beckmannia syzigachne May Involve ROS Burst and Non-Target-Site Resistance Mechanisms. Ecotoxicol. Environ. Saf. 2022;229:113072. doi: 10.1016/j.ecoenv.2021.113072. PubMed DOI
Dimaano N.G., Iwakami S. Cytochrome P450-Mediated Herbicide Metabolism in Plants: Current Understanding and Prospects. Pest Manag. Sci. 2021;77:22–32. doi: 10.1002/ps.6040. PubMed DOI
Sen M.K., Hamouzová K., Mikulka J., Bharati R., Košnarová P., Hamouz P., Soukup J. Enhanced Metabolism and Target Gene Overexpression Confer Resistance Against Acetolactate Synthase-Inhibiting Herbicides in Bromus sterilis. Pest Manag. Sci. 2021;77:2122–2128. doi: 10.1002/ps.6241. PubMed DOI
Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.-C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq Transcriptome Analysis to Identify Genes Involved in Metabolism-Based Diclofop Resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514. PubMed DOI
Délye C., Gardin J.A.C., Boucansaud K., Chauvel B., Petit C. Non-Target-Site-Based Resistance Should Be the Centre of Attention for Herbicide Resistance Research: Alopecurus myosuroides as an Illustration. Weed Res. 2011;51:433–437. doi: 10.1111/j.1365-3180.2011.00864.x. DOI
Han Y., Gao H., Sun Y., Wang Y., Yan C., Ma H., Huang Z. Target Gene Overexpression and Enhanced Metabolism Confer Resistance to Nicosulfuron in Eriochloa villosa (Thunb.) Pestic. Biochem. Physiol. 2024;202:105946. doi: 10.1016/j.pestbp.2024.105946. PubMed DOI
Ghanizadeh H., Buddenhagen C.E., Griffiths A.G., Harrington K.C., Ngow Z. Target-Site and non-target site resistance mechanisms are associated with iodosulfuron resistance in Lolium perenne L. N. Z. J. Agric. Res. 2024;67:40–53. doi: 10.1080/00288233.2022.2153875. DOI
Wrzesińska B., Kościelniak K., Frąckowiak P., Praczyk T., Obrępalska-Stęplowska A. The Analysis of Reference Genes Expression Stability in Susceptible and Resistant Apera spica-venti Populations under Herbicide Treatment. Sci. Rep. 2021;11:22145. doi: 10.1038/s41598-021-01615-6. PubMed DOI PMC
Palma-Bautista C., Vázquez-García J.G., de Portugal J., Bastida F., Alcántara-De La Cruz R., Osuna-Ruiz M.D., Torra J., De Prado R. Enhanced Detoxification via Cyt-P450 Governs Cross-Tolerance to ALS-Inhibiting Herbicides in Weed Species of Centaurea. Environ. Pollut. 2023;322:121140. doi: 10.1016/j.envpol.2023.121140. PubMed DOI
Palma-Bautista C., Vázquez-García J.G., Domínguez-Valenzuela J.A., Ferreira Mendes K., Alcántara De La Cruz R., Torra J., De Prado R. Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. J. Agric. Food Chem. 2021;69:14792–14801. doi: 10.1021/acs.jafc.1c04279. PubMed DOI
Torra J., Rojano-Delgado A.M., Menéndez J., Salas M., De Prado R. Cytochrome P450 Metabolism-Based Herbicide Resistance to Imazamox and 2,4-D in Papaver rhoeas. Plant Physiol. Biochem. 2021;160:51–61. doi: 10.1016/j.plaphy.2021.01.007. PubMed DOI
Délye C. Unravelling the Genetic Bases of Non-Target-Site-Based Resistance (NTSR) to Herbicides: A Major Challenge for Weed Science in the Forthcoming Decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. PubMed DOI
Yu Q., Powles S. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production. Plant Physiol. 2014;166:1106–1118. doi: 10.1104/pp.114.242750. PubMed DOI PMC
Beckie H.J., Tardif F.J. Herbicide Cross Resistance in Weeds. Crop Prot. 2012;35:15–28. doi: 10.1016/j.cropro.2011.12.018. DOI
Alcántara-De La Cruz R., Rojano-Delgado A.M., Giménez M.J., Cruz-Hipolito H.E., Domínguez-Valenzuela J.A., Barro F., De Prado R. First Resistance Mechanisms Characterization in Glyphosate-Resistant Leptochloa virgata. Front. Plant Sci. 2016;7:1742. doi: 10.3389/fpls.2016.01742. PubMed DOI PMC
Zhong V., Archibald B.N., Brophy J.A. Transcriptional and Post-Transcriptional Controls for Tuning Gene Expression in Plants. Curr. Opin. Plant Biol. 2023;71:102315. doi: 10.1016/j.pbi.2022.102315. PubMed DOI
Hada Z., Menchari Y., Rojano-Delgado A.M., Torra J., Menéndez J., Palma-Bautista C., Souissi T. Point Mutations as Main Resistance Mechanism Together with P450-Based Metabolism Confer Broad Resistance to Different ALS-Inhibiting Herbicides in Glebionis coronaria from Tunisia. Front. Plant Sci. 2021;12:626702. doi: 10.3389/fpls.2021.626702. PubMed DOI PMC
Palma-Bautista C., Vázquez-García J.G., Osuna M.D., Garcia-Garcia B., Torra J., Portugal J., De Prado R. An Asp376Glu Substitution in ALS Gene and Enhanced Metabolism Confers High Tribenuron-Methyl Resistance in Sinapis alba. Front. Plant Sci. 2022;13:1011596. doi: 10.3389/fpls.2022.1011596. PubMed DOI PMC
Sen M.K., Hamouzová K., Onkokesung N., Menendez J., Torra J., Košnarová P., Sellamuthu G., Gupta A., Bharati R., Sur V.P., et al. Transcriptomic Response in Pyroxsulam-Resistant and Susceptible Bromus sterilis Identified Three Distinct Mechanisms of Resistance. bioRxiv. 2023 doi: 10.1101/2023.07.14.548957. preprint. DOI
Souza A.d.S., Leal J.F.L., Montgomery J.S., Ortiz M.F., Simões Araujo A.L., Morran S., de Figueiredo M.R.A., Langaro A.C., Zobiole L.H.S., Nissen S.J., et al. Nontarget-Site Resistance Due to Rapid Physiological Response in 2,4-D Resistant Conyza sumatrensis: Reduced 2,4-D Translocation and Auxin-Induced Gene Expression. Pest Manag. Sci. 2023;79:3581–3592. doi: 10.1002/ps.7541. PubMed DOI
Nandula V.K., Ray J.D., Ribeiro D.N., Pan Z., Reddy K.N. Glyphosate Resistance in Tall Waterhemp (Amaranthus tuberculatus) from Mississippi Is Due to Both Altered Target-Site and Nontarget-Site Mechanisms. Weed Sci. 2013;61:374–383. doi: 10.1614/WS-D-12-00155.1. DOI
Nalin D., Munhoz-Garcia G.V., Witter A.P.W., Takeshita V., Oliveira C., Adegas F.S., Tornisielo V.L., Oliveira Junior R.S.D., Constantin J. Absorption, Translocation, and Metabolism of Glyphosate and Imazethapyr in Smooth Pigweed with Multiple Resistance. Agronomy. 2023;13:1720. doi: 10.3390/agronomy13071720. DOI