Molecular Mechanisms of Resistance against PSII-Inhibiting Herbicides in Amaranthus retroflexus from the Czech Republic

. 2024 Jul 11 ; 15 (7) : . [epub] 20240711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39062683

Grantová podpora
QL24010167 National Agency of Agricultural Research

Amaranthus retroflexus L. (redroot pigweed) is one of the most problematic weeds in maize, sugar beet, vegetables, and soybean crop fields in Europe. Two pigweed amaranth biotypes (R1 and R2) from the Czech Republic resistant to photosystem II (PSII)-inhibiting herbicides were analyzed in this study. This study aimed to identify the genetic mechanisms that underlie the resistance observed in the biotypes. Additionally, we also intended to establish the use of chlorophyll fluorescence measurement as a rapid and reliable method for confirming herbicide resistance in this weed species. Both biotypes analyzed showed high resistance factors in a dose-response study and were thus confirmed to be resistant to PSII-inhibiting herbicides. A sequence analysis of the D1 protein revealed a well-known Ser-Gly substitution at amino acid position 264 in both biotypes. Molecular docking studies, along with the wild-type and mutant D1 protein's secondary structure analyses, revealed that the S264G mutation did not reduce herbicide affinity but instead indirectly affected the interaction between the target protein and the herbicides. The current study identified the S264G mutation as being responsible for conferring herbicide resistance in the pigweed amaranth biotypes. These findings can provide a strong basis for future studies that might use protein structure and mutation-based approaches to gain further insights into the detailed mechanisms of resistance in this weed species. In many individuals from both biotypes, resistance at a very early stage (BBCH10) of plants was demonstrated several hours after the application of the active ingredients by the chlorophyll fluorescence method. The effective PS II quantum yield parameter can be used as a rapid diagnostic tool for distinguishing between sensitive and resistant plants on an individual level. This method can be useful for identifying herbicide-resistant weed biotypes in the field, which can help farmers and weed management practitioners develop more effective weed control tactics.

Zobrazit více v PubMed

Chauhan B. Biology and Management of Problematic Crop Weed Species. Elsevier; Amsterdam, The Netherlands: 2021.

CABI Amaranthus retroflexus (Redroot Pigweed) CABI Compend. 2021;11:4652. doi: 10.1079/cabicompendium.4652. DOI

Weaver S.E., McWilliams E.L. The Biology of Canadian Weeds.: 44. Amaranthus retroflexus L., A. powellii S. Wats. and A. hybridus L. Can. J. Plant Sci. 1980;60:1215–1234. doi: 10.4141/cjps80-175. DOI

Vencill W., Grey T., Culpepper A.S., Gaines C., Westra P. Herbicide-Resistance in the Amaranthaceae. J. Plant Dis. Protection. 2008;9((Suppl. S21)):41–44.

Tranel P.J. Herbicide Resistance in Amaranthus tuberculatus†. Pest Manag. Sci. 2021;77:43–54. doi: 10.1002/ps.6048. PubMed DOI

De Prado R., Lopez-Martinez N., Gimenez-Espinosa R. Herbicide-Resistant Weeds in Europe: Agricultural, Physiological and Biochemical Aspects. In: De Prado R., Jorrín J., García-Torres L., editors. Weed and Crop Resistance to Herbicides. Springer; Dordrecht, The Netherlands: 1997. pp. 17–27.

Cao Y., Wei S., Huang H., Li W., Zhang C., Huang Z. Target-Site Mutation and Enhanced Metabolism Confer Resistance to Thifensulfuron-Methyl in a Multiple-Resistant Redroot Pigweed (Amaranthus retroflexus) Population. Weed Sci. 2021;69:161–166. doi: 10.1017/wsc.2020.93. DOI

Jones E.A.L., Andres R.J., Dunne J.C., Leon R.G., Everman W.J. Confirmation and Detection of Novel Acetolactate Synthase- and Protoporphyrinogen Oxidase–Inhibiting Herbicide-Resistant Redroot Pigweed (Amaranthus retroflexus) Populations in North Carolina. Weed Sci. 2023;71:84–94. doi: 10.1017/wsc.2023.4. DOI

Huang Z., Chen J., Zhang C., Huang H., Wei S., Zhou X., Chen J., Wang X. Target-Site Basis for Resistance to Imazethapyr in Redroot Amaranth (Amaranthus retroflexus L.) Pestic. Biochem. Physiol. 2016;128:10–15. doi: 10.1016/j.pestbp.2015.10.011. PubMed DOI

Thiel H., Varrelmann M. Identification of a New PSII Target Site psbA Mutation Leading to D1 Amino Acid Leu218Val Exchange in the Chenopodium Album D1 Protein and Comparison to Cross-Resistance Profiles of Known Modifications at Positions 251 and 264. Pest Manag. Sci. 2014;70:278–285. doi: 10.1002/ps.3556. PubMed DOI

Mengistu L.W., Mueller-Warrant G.W., Liston A., Barker R.E. psbA Mutation (Valine219 to Isoleucine) in Poa annua Resistant to Metribuzin and Diuron. Pest Manag. Sci. 2000;56:209–217. doi: 10.1002/(SICI)1526-4998(200003)56:3<209::AID-PS117>3.0.CO;2-8. DOI

Mechant E., Tania D., Olivier H., Robert O., Robert B. Target Site Resistance to Metamitron in Chenopodium album L. J. Plant Dis. Prot. 2008;XXI:37–40.

Perez-Jones A., Intanon S., Mallory-Smith C. Molecular Analysis of Hexazinone-Resistant Shepherd’s-Purse (Capsella bursa-pastoris) Reveals a Novel psbA Mutation. Weed Sci. 2009;57:574–578. doi: 10.1614/WS-09-089.1. DOI

Blauth S.L., Steffens J.C., Churchill G.A., Mutschler M.A. Identification of QTLs Controlling Acylsugar Fatty Acid Composition in an Intraspecific Population of Lycopersicon pennellii (Corr.) D’Arcy. Theor. Appl. Genet. 1999;99:373–381. doi: 10.1007/s001220051247. DOI

Park K.W., Mallory-Smith C.A. psbA Mutation (Asn266 to Thr) in Senecio Vulgaris L. Confers Resistance to Several PS II-Inhibiting Herbicides. Pest Manag. Sci. 2006;62:880–885. doi: 10.1002/ps.1252. PubMed DOI

Lu H., Yu Q., Han H., Owen M.J., Powles S.B. A Novel psbA Mutation (Phe274–Val) Confers Resistance to PSII Herbicides in Wild Radish (Raphanus raphanistrum) Pest Manag. Sci. 2019;75:144–151. doi: 10.1002/ps.5079. PubMed DOI

Schwenger-Erger C., Thiemann J., Barz W., Johanningmeier U., Naber D. Metribuzin Resistance in Photoautotrophic Chenopodium Rubrum Cell Cultures. Characterization of Double and Triple Mutations in the psbA Gene. FEBS Lett. 1993;329:43–46. doi: 10.1016/0014-5793(93)80189-2. PubMed DOI

Sen M.K., Hamouzová K., Mikulka J., Bharati R., Košnarová P., Hamouz P., Roy A., Soukup J. Enhanced Metabolism and Target Gene Overexpression Confer Resistance against Acetolactate Synthase-Inhibiting Herbicides in Bromus sterilis. Pest Manag. Sci. 2021;77:2122–2128. doi: 10.1002/ps.6241. PubMed DOI

Košnarová P., Hamouz P., Hamouzová K., Linn A., Sen M.K., Mikulka J., Šuk J., Soukup J. Apera spica-venti in the Czech Republic Develops Resistance to Three Herbicide Modes of Action. Weed Res. 2021;61:420–429. doi: 10.1111/wre.12500. DOI

Meng X.-Y., Zhang H.-X., Mezei M., Cui M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput.-Aided Drug Des. 2011;7:146–157. doi: 10.2174/157340911795677602. PubMed DOI PMC

Battaglino B., Grinzato A., Pagliano C. Binding Properties of Photosynthetic Herbicides with the QB Site of the D1 Protein in Plant Photosystem II: A Combined Functional and Molecular Docking Study. Plants. 2021;10:1501. doi: 10.3390/plants10081501. PubMed DOI PMC

Shi J., Cao H.-F., Wang C.-F., Gao S., Wang J.-Y., Zhao L.-X., Ye F., Fu Y. In Silico Approach of Novel HPPD/PDS Dual Target Inhibitors by Pharmacophore, AILDE and Molecular Docking. J. Taiwan Inst. Chem. Eng. 2023;143:104711. doi: 10.1016/j.jtice.2023.104711. DOI

Liu C., Zhang T., Yang X., Wang L., Long Y., Hasi A., Pei X. A LuALS Mutation with High Sulfonylurea Herbicide Resistance in Linum usitatissimum L. Int. J. Mol. Sci. 2023;24:2820. doi: 10.3390/ijms24032820. PubMed DOI PMC

Statsoft.com. 2016. STATISTICA|New Features in STATISTICA 12. [(accessed on 1 February 2024)]. Available online: http://www.statsoft.com/Products/STATISTICA-Features/Version-12.

Dallakyan S., Olson A.J. Small-Molecule Library Screening by Docking with PyRx. In: Hempel J.E., Williams C.H., Hong C.C., editors. Chemical Biology: Methods and Protocols. Springer; New York, NY, USA: 2015. pp. 243–250. PubMed

Adamczewski K., Kaczmarek S., Kierzek R., Matysiak K. Significant Increase of Weed Resistance to Herbicides in Poland. J. Plant Prot. Res. 2019;59:129293. doi: 10.24425/jppr.2019.129293. DOI

Scarabel L., Varotto S., Sattin M. A European Biotype of Amaranthus retroflexus Cross-Resistant to ALS Inhibitors and Response to Alternative Herbicides. Weed Res. 2007;47:527–533. doi: 10.1111/j.1365-3180.2007.00600.x. DOI

Li W., Cao Y., Liu Z., Wei S., Huang H., Lan Y., Sun Y., Huang Z. Investigation of Resistance Mechanisms to Bentazone in Multiple Resistant Amaranthus retroflexus Populations. Pestic. Biochem. Physiol. 2022;186:105164. doi: 10.1016/j.pestbp.2022.105164. PubMed DOI

Prado R., de Jorrín J., Garcia-Torres L. Weed and Crop Resistance to Herbicides. Springer Science & Business Media; Berlin/Heidelberg, Germany: 1997.

Kocurek V., Smutný V., Filová J. Chlorophyll Fluorescence as an Instrument for the Assessment of Herbicide Efficacy. Cereal Res. Commun. 2009;37:289–292.

Linn A.I., Košnarová P., Soukup J., Gerhards R. Detecting Herbicide-Resistant Apera spica-venti with a Chlorophyll Fluorescence Agar Test. Plant Soil Environ. 2018;64:386–392. doi: 10.17221/110/2018-PSE. DOI

Hassannejad S., Lotfi R., Ghafarbi S.P., Oukarroum A., Abbasi A., Kalaji H.M., Rastogi A. Early Identification of Herbicide Modes of Action by the Use of Chlorophyll Fluorescence Measurements. Plants. 2020;9:529. doi: 10.3390/plants9040529. PubMed DOI PMC

Van Oorschot J.L.P., Van Leeuwen P.H. Inhibition of Photosynthesis in Intact Plants of Biotypes Resistant or Susceptible to Atrazine and Cross-Resistance to Other Herbicides. Weed Res. 1988;28:223–230. doi: 10.1111/j.1365-3180.1988.tb00799.x. DOI

Norsworthy J.K., Talbert R.E., Hoagland R.E. Chlorophyll Fluorescence for Rapid Detection of Propanil-Resistant Barnyardgrass (Echinochloa crus-galli) Weed Sci. 1998;46:163–169. doi: 10.1017/S0043174500090366. DOI

Linn A.I., Mink R., Peteinatos G.G., Gerhards R. In-Field Classification of Herbicide-Resistant Papaver rhoeas and Stellaria media Using an Imaging Sensor of the Maximum Quantum Efficiency of Photosystem II. Weed Res. 2019;59:357–366. doi: 10.1111/wre.12374. DOI

Wang P., Peteinatos G., Li H., Brändle F., Pfündel E., Drobny H.G., Gerhards R. Rapid Monitoring of Herbicide-Resistant Alopecurus Myosuroides Huds. Using Chlorophyll Fluorescence Imaging Technology. J. Plant Dis. Prot. 2018;125:187–195. doi: 10.1007/s41348-017-0131-7. DOI

Oettmeier W. Herbicide Resistance and Supersensitivity in Photosystem II. Cell. Mol. Life Sci. CMLS. 1999;55:1255–1277. doi: 10.1007/s000180050370. PubMed DOI PMC

Johanningmeier U., Sopp G., Brauner M., Altenfeld U., Orawski G., Oettmeier W. Herbicide Resistance and Supersensitivity in Ala250 or Ala251 Mutants of the D1 Protein in Chlamydomonas reinhardtii. Pestic. Biochem. Physiol. 2000;66:9–19. doi: 10.1006/pest.1999.2455. DOI

Aiach A., Ohmann E., Bodner U., Johanningmeier U. A Herbicide Resistant Euglena Mutant Carrying a Ser to Thr Substitution at Position 265 in the D1 Protein of Photosystem II. Z. Für Naturforschung C. 1992;47:245–248. doi: 10.1515/znc-1992-3-413. DOI

Bowie J.U. Membrane Protein Folding: How Important Are Hydrogen Bonds? Curr. Opin. Struct. Biol. 2011;21:42–49. doi: 10.1016/j.sbi.2010.10.003. PubMed DOI PMC

Hubbard R.E., Kamran Haider M. Encyclopedia of Life Sciences. Wiley; Hoboken, NJ, USA: 2010. Hydrogen Bonds in Proteins: Role and Strength.

Rost B. Review: Protein Secondary Structure Prediction Continues to Rise. J. Struct. Biol. 2001;134:204–218. doi: 10.1006/jsbi.2001.4336. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...