Channel character of uncoupling protein-mediated transport
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 HL067842
NHLBI NIH HHS - United States
R01 HL067842-09
NHLBI NIH HHS - United States
HL067842
NHLBI NIH HHS - United States
PubMed
20206627
PubMed Central
PMC3617986
DOI
10.1016/j.febslet.2010.02.068
PII: S0014-5793(10)00172-9
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- elektroforéza MeSH
- iontové kanály metabolismus MeSH
- lidé MeSH
- mitochondriální proteiny metabolismus MeSH
- protony MeSH
- uncoupling protein 1 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- iontové kanály MeSH
- mitochondriální proteiny MeSH
- protony MeSH
- uncoupling protein 1 MeSH
Mitochondrial uncoupling proteins (UCPs) are pure anion uniporters, which mediate fatty acid (FA) uniport leading to FA cycling. Protonated FAs then flip-flop back across the lipid bilayer. An existence of pure proton channel in UCPs is excluded by the equivalent flux-voltage dependencies for uniport of FAs and halide anions, which are best described by the Eyring barrier variant with a single energy well in the middle of two peaks. Experiments with FAs unable to flip and alkylsulfonates also support this view. Phylogenetically, UCPs took advantage of the common FA-uncoupling function of SLC25 family carriers and dropped their solute transport function.
Zobrazit více v PubMed
Hanák P, Ježek P. Mitochondrial uncoupling proteins and phylogenesis-UCP4 as the ancestral uncoupling protein. FEBS Lett. 2001;495:137–41. PubMed
Ježek P, Ježek J. Sequence anatomy of mitochondrial anion carriers. FEBS Lett. 2003;534:15–25. PubMed
Ježek P, Žáčka M, Růžička M, Škobisová E, Jabůrek M. Mitochondrial uncoupling proteins – facts and fantasies. Physiol. Res. 2004;53(S1):S199–S211. PubMed
Ježek P, Engstová H, Žáčková M, Vercesi AE, Costa ADT, Arruda P, Garlid KD. Fatty acid cycling mechanism and mitochondrial uncoupling proteins. Biochim. Biophys. Acta. 1998;1365:319–27. PubMed
Ježek P. Fatty acid interaction with mitochondrial uncoupling proteins. J. Bioenerg. Biomembr. 1999;31:457–66. PubMed
Nicholls DG. The physiological regulation of uncoupling proteins. Biochim. Biophys. Acta. 2006;1757:459–66. PubMed
Porter RK. Uncoupling protein 1: a short-circuit in the chemiosmotic process. J. Bioenerg. Biomembr. 2008;40:457–61. PubMed
Klingenberg M, Echtay KS. Uncoupling proteins: the issues from a biochemist point of view. Biochim. Biophys. Acta. 2001;1504:128–43. PubMed
Nedergaard J, Cannon B. The `novel' `uncoupling' proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp. Physiol. 2003;88:65–84. PubMed
Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 2005;6:248–61. PubMed
Robinson AJ, Overy C, Kunji ERS. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc. Acad. Natl. Sci. U S A. 2008;105:17766–71. PubMed PMC
Mori S, Yoshizuka N, Takizawa M, Takema Y, Murase T, Tokimitsu I, Saito M. J. Invest. Dermatol. 2008;128:1894–1900. PubMed
Lengacher S, Magistretti PJ, Pellerin LJ. Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle. J. Cereb. Blood Flow Metab. 2004;24:780–788. PubMed
Sale MM, Hsu FC, Palmer ND, Gordon CJ, Keene KL, Borgerink HM, Sharma AJ, Bergman RN, Taylor KD, Saad MF, Norris JM. The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study. BMC Endocr. Disord. 2007;30:7–1. PubMed PMC
Ježek P, Garlid KD. New substrates and competitive inhibitors of the Cl− translocating pathway of the uncoupling protein of brown adipose tissue mitochondria. J. Biol. Chem. 1990;265:19303–11. PubMed
Ježek P, Orosz DE, Garlid KD. Reconstitution of the uncoupling protein of brown adipose tissue mitochondria: Demonstration of GDP-sensitive halide anion uniport. J. Biol. Chem. 1990;265:19296–302. PubMed
Ježek P, Orosz DE, Modrianský M, Garlid KD. Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids: A new look at old hypotheses. J. Biol. Chem. 1994;269:26184–90. PubMed
Garlid KD, Orosz DE, Modrianský M, Vassanelli S, Ježek P. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J. Biol. Chem. 1996;271:2615–20. PubMed
Ježek P, Modrianský M, Garlid KD. Inactive fatty acids are unable to flip-flop across the lipid bilayer. FEBS Lett. 1997;408:161–5. PubMed
Ježek P, Modrianský M, Garlid KD. A structure activity study of fatty acid interaction with mitochondrial uncoupling protein. FEBS Lett. 1997;408:166–70. PubMed
Ježek P, Borecký J. The mitochondrial uncoupling protein may participate in futile cycling of pyruvate and other monocarboxylates. Amer. J. Physiol. 1998;275:C496–504. PubMed
Jabůrek M, Vařecha M, Ježek P, Garlid KD. Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H+ translocation by UCP1 is not necessary for uncoupling. J. Biol. Chem. 2001;276:31897–905. PubMed
Jabůrek M, Vařecha M, Gimeno RE, Dembski M, Ježek P, Zhang M, Burn P, Tartaglia LA, Garlid KD. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J. Biol. Chem. 1999;274:26003–7. PubMed
Ježek P, Costa ADT, Vercesi AE. Evidence for anion translocating plant uncoupling mitochondrial protein (PUMP) in potato mitochondria. J. Biol. Chem. 1996;271:32743–9. PubMed
Ježek P, Costa ADT, Vercesi AE. Reconstituted plant uncoupling mitochondrial protein (PUMP) allows for proton translocation via fatty acid cycling mechanism. J. Biol. Chem. 1997;272:24272–8. PubMed
Echtay KS, Brand MJ. Coenzyme Q induces GDP-sensitive proton conductance in kidney mitochondria. Biochem. Soc. Trans. 2001;29:763–8. PubMed
Skulachev VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991;294:158–62. PubMed
Žáčková M, Škobisová E, Urbánková E, Ježek P. Activating ω-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2003;278:20761–9. PubMed
Jabůrek M, Miyamoto S, Di Mascio P, Garlid KD, Ježek P. Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2. J. Biol. Chem. 2004;279:53097–102. PubMed
Urbánková E, Voltchenko A, Pohl P, Ježek P, Pohl EE. Transport kinetics of uncoupling proteins: Analysis of UCP1 reconstituted in planar lipid bilayers. J. Biol. Chem. 2003;278:32497–500. PubMed
Beck V, Jab rek M, Breen EP, Porter RK, Ježek P, Pohl EE. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim. Biophys. Acta. 2006;1757:474–9. PubMed
Beck V, Jabůrek M, Demina T, Rupprecht A, Porter RK, Ježek P, Pohl EE. High efficiency of polyunsaturated fatty acids in the activation of human uncoupling protein 1 and 2 reconstituted in planar lipid bilayers. FASEB J. 2007;21:1137–44. PubMed
Rupprecht A, Beck V, Ninnemann O, Jab rek M, Trimbuch T, Klishin SS, Ježek P, Skulachev VP, Pohl EE. Role of the transmembrane potential in the mitochondrial membrane proton leak. Biophys. J. 2010 PubMed PMC
Schulten Z, Schulten K. A model for the resistance of the proton channel formed by the proteolipid of ATPase. Eur. Biophys. J. 1985;11:149–55. PubMed
Feniouk BA, Kozlova MA, Knorre DA, Cherepanov DA, Mulkidjanian AY, Junge W. The proton-driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys. J. 2004;86:4094–109. PubMed PMC
Smondyrev AM, Voth GA. Molecular dynamics simulation of proton transport near the surface of a phospholipid membrane. Biophys. J. 2002;82:1460–8. PubMed PMC
Till MS, Essigke T, Becker T, Ullmann GM. Simulating the proton transfer in gramicidin A by a sequential dynamical Monte Carlo method. J. Phys. Chem. B. 2008;112:13401–10. PubMed
Akinaga Y, Hyodo SA, Ikeshoji T. Lattice Boltzmann simulations for proton transport in 2-D model channels of Nafion. Phys. Chem. Chem. Phys. 2008;10:5678–88. PubMed
Yi M, Cross TA, Zhou HX. Conformational heterogeneity of the M2 proton channel and a structural model for channel activation. Proc. Natl. Acad. Sci. U S A. 2009;106:13311–6. PubMed PMC
Echtay KS, Winkler E, Bienengraeber M, Klingenberg M. Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Biochemistry. 2000;39:3311–7. PubMed
Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cochemé HM, Green K, Buckingham J, Tailor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RAJ, Brand M. Superoxide activates uncoupling protein by generating carbon-centered radicals and initiating lipid peroxidation. J. Biol. Chem. 2003;278:48534–45. PubMed
Garlid KD, Beavis AD, Ratkje SK. On the nature of ion leaks in energy-transducing membranes. Biochim. Biophys. Acta. 1989;976:109–20. PubMed
Sun X, Garlid KD. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes. J. Biol. Chem. 1992;267:19147–54. PubMed
Fujitani Y, Bedeaux D. A molecular theory for nonohmicity of the ion leak across the lipid-bilayer membrane. Biophys. J. 1997;73:1805–14. PubMed PMC
Krishnamoorthy G, Hinkle PC. Non-ohmic proton conductance of mitochondria and liposomes. Biochemistry. 1984;23:1640–5. PubMed
Garlid KD. Chemiosmotic Theory. In: Carafoli E, editor. Encylopedia Biol. Chem. Elsevier; Amsterdam: 2004.
Wojtczak L, Wieckowski MR, Schönfeld P. Protonophoric activity of fatty acid analogs and derivatives in the inner mitochondrial membrane: a further argument for the fatty acid cycling model. Arch. Biochem. Biophys. 1998;357:76–84. PubMed
Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol. Rev. 1984;64:1–64. PubMed
Johnston JM, Khalid S, Sansom MSP. Conformational dynamics of the mitochondrial ADP/ATP carrier: a simulation study. Mol. Membr. Biol. 2008;25:506–17. PubMed
Wang Y, Tajkhorshid E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc. Natl. Acad. Sci. USA. 2008;105:9598–603. PubMed PMC
Dehez F, Pebay-Peyroula E, Chipot C. Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J. Am. Chem. Soc. 2008;130:12725–33. PubMed
Skulachev VP. Anion carriers in fatty acid-mediated physiological uncoupling. J Bioenerg. Biomembr. 1999;31:431–45. PubMed
Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling
Control mechanisms in mitochondrial oxidative phosphorylation
Redox homeostasis in pancreatic β cells