Stimulus duration encoding occurs early in the moth olfactory pathway
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA UK No. 1042120
Univerzita Karlova v Praze (Charles University)
PubMed
39363042
PubMed Central
PMC11449909
DOI
10.1038/s42003-024-06921-z
PII: 10.1038/s42003-024-06921-z
Knihovny.cz E-zdroje
- MeSH
- acetáty MeSH
- čich fyziologie MeSH
- čichové buňky * fyziologie MeSH
- čichové dráhy fyziologie MeSH
- Drosophila melanogaster fyziologie MeSH
- Drosophila fyziologie MeSH
- feromony * MeSH
- kyseliny olejové MeSH
- můry * fyziologie MeSH
- odoranty analýza MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- cis-vaccenyl acetate MeSH Prohlížeč
- feromony * MeSH
- kyseliny olejové MeSH
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Zobrazit více v PubMed
Jones, C. D. On the structure of instantaneous plumes in the atmosphere. J. Hazard. Mat.7, 87–112 (1983).
Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol.25, 211–222 (2000).
Justus, K.A., Murlis, J., Jones, C. & Cardé, R.T. Measurement of odor-plume structure in a wind tunnel using a photoionization detector and a tracer gas. Environ. Fluid Mech.10.1023/A:1016227601019 (2002).
Celani, A., Villermaux, E. & Vergassola, M. Odor landscapes in turbulent environments. Phys. Rev. X4, 041015 (2014).
Willis, M. A. & Baker, T. C. Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth, Grapholita molesta. Physiol. Entomol.9, 341–358 (1984).
Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl Acad. Sci. USA91, 5756–5760 (1994). PubMed PMC
Kennedy, J. S. Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol. Entomol.8, 109–120 (1983).
Breugel, F. & Dickinson, M. H. Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr. Biol.24, 274–286 (2014). PubMed
Cardé, R. T. Navigation along windborne plumes of pheromone and resource-linked odors. Annu. Rev. Entomol.66, 317–336 (2021). PubMed
Kim, A.J., Lazar, A.A. & Slutskiy, Y.B. System identification of Drosophila olfactory sensory neurons. J. Comput. Neurosci.10.1007/s10827-010-0265-0 (2011). PubMed PMC
Nagel, K. I. & Wilson, R. I. Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat. Neurosci.14, 208–216 (2011). PubMed PMC
Martelli, C., Carlson, J.R., Emonet, T. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J. Neurosci.10.1523/JNEUROSCI.0426-12.2013 (2013). PubMed PMC
Egea-Weiss, A., Renner, A., Kleineidam, C. J. & Szyszka, P. High precision of spike timing across olfactory receptor neurons allows rapid odor coding in Drosophila. iScience4, 76–83 (2018). PubMed PMC
Kaissling, K.-E., Meng, L. Z. & Bestmann, H.-J. Responses of bombykol receptor cells to (Z,E)-4,6-hexadecadiene and linalool. J. Comp. Physiol. A165, 147–154 (1989).
Jarriault, D., Gadenne, C., Lucas, P., Rospars, J.-P. & Anton, S. Transformation of the sex pheromone signal in the noctuid moth agrotis ipsilon: from peripheral input to antennal lobe output. Chem. Senses35, 705–715 (2010). PubMed
Grémiaux, A., Nowotny, T., Martinez, D., Lucas, P. & Rospars, J.-P. Modelling the signal delivered by a population of first-order neurons in a moth olfactory system. Brain Res.10.1016/j.brainres.2011.09.035 (2012). PubMed
Rospars, J.-P. et al. Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons. PLoS Comput. Biol.10, 1003975 (2014). PubMed PMC
Cardé, R.T. & Charlton, R.E. Olfactory sexual communication in Lepidoptera: strategy, sensitivity and selectivity. In: (ed Lewis, T.) Insect Communication, pp. 241–265. (Academic Press, London, 1984).
Elkinton, J. S., Schal, C., Onot, T. & Cardé, R. T. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol.12, 399–406 (1987).
Shorey, H.H. Animal Communication by Pheromones. (Academic Press, 1976).
Wall, C. & Perry, J. N. Range of action of moth sex-attractant sources. Entomol. Exp. Appl.44, 5–14 (1987).
Willis, M. A., Ford, E. A. & Avondet, J. L. Odor tracking flight of male Manduca sexta moths along plumes of different cross-sectional area. J. Comp. Physiol. A199, 1015–1036 (2013). PubMed
Vickers, N. J. Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics. Chem. Senses31, 155–166 (2006). PubMed
Olsson, A.-M., Jönsson, J.A., Thelin, B. & Liljefors, T. Determination of the vapor pressures of moth sex pheromone components by a gas chromatographic method. J. Chem. Ecol.10.1007/BF00988456 (1983). PubMed
Taisz, I. et al. Generating parallel representations of position and identity in the olfactory system. Cell186, 2556–2573 (2023). PubMed PMC
Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature446, 542–546 (2007). PubMed
Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell125, 143–160 (2006). PubMed
Andersson, M.N., Schlyter, F., Hill, S.R. & Dekker, T. What Reaches the Antenna? How to Calibrate Odor Flux and Ligand-Receptor Affinities. Chem. Senses10.1093/chemse/bjs009 (2012). PubMed
Montagné, N. et al. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. Eur. J. Neurosci.10.1111/j.1460-9568.2012.08183.x (2012). PubMed
Vetter, R.S., Sage, A.E., Justus, K.A., Cardé, R.T. & Galizia, C.G. Temporal integrity of an airborne odor stimulus is greatly affected by physical aspects of the odor delivery system. Chem. Sens.10.1093/chemse/bjj040 (2006). PubMed
Gorur-Shandilya, S., Martelli, C., Demir, M. & Emonet, T. Controlling and measuring dynamic odorant stimuli in the laboratory. J. Exp. Biol.222, 207787 (2019). PubMed PMC
Tuckman, H., Kim, J., Rangan, A., Lei, H. & Patel, M. Dynamics of sensory integration of olfactory and mechanical stimuli within the response patterns of moth antennal lobe neurons. J. Theor. Biol.10.1016/j.jtbi.2020.110510 (2021). PubMed
Tuckman, H., Patel, M. & Lei, H. Effects of mechanosensory input on the tracking of pulsatile odor stimuli by moth antennal lobe neurons. Front. Neurosci.10.3389/fnins.2021.739730 (2021). PubMed PMC
Budick, S. A., Reiser, M. B. & Dickinson, M. H. The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster. J. Exp. Biol.210, 4092–4103 (2007). PubMed
Sane, S. P., Dieudonné, A., Willis, M. A. & Daniel, T. L. Antennal mechanosensors mediate flight control in moths. Science315, 863–866 (2007). PubMed
Dieudonné, A., Daniel, T.L. & Sane, S.P. Encoding properties of the mechanosensory neurons in the Johnston’s organ of the hawk moth, Manduca sexta. J. Exp. Biol.10.1242/jeb.101568 (2014). PubMed
Tiraboschi, E., Leonardelli, L., Segata, G. & Haase, A. Parallel processing of olfactory and mechanosensory information in the honey bee antennal lobe. Front. Physiol. 10.3389/fphys.2021.790453 (2021). PubMed PMC
Kaissling, K. Chemo-Electrical Transduction in Insect Olfactory Receptors. Annu. Rev. Neurosci. 9(1) 10.1146/annurev.ne.09.030186.001005 (1986). PubMed
Kaissling, K. E., Strausfeld, C. Z. & Rumbo, E. R. Adaptation processes in insect olfactory receptors. Ann. N. Y. Acad. Sci.510, 104–112 (1987). PubMed
Gorur-Shandilya, S., Demir, M., Long, J., Clark, D. A. & Emonet, T. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. eLife6, 27670 (2017). PubMed PMC
Vandroux, P. et al. Activation of pheromone-sensitive olfactory neurons by plant volatiles in the moth Agrotis ipsilon does not occur at the level of the pheromone receptor protein. Front. Ecol. Evol.10.3389/fevo.2022.1035252 (2022).
Si, G. et al. Structured odorant response patterns across a complete olfactory receptor neuron population. Neuron101, 950–962 (2019). PubMed PMC
Lucas, P. & Shimahara, T. Voltage- and calcium-activated currents in cultured olfactory receptor neurons of male Mamestra brassicae (Lepidoptera). Chem. Senses27, 599–610 (2002). PubMed
Zufall, F., Stengl, M., Franke, C., Hildebrand, J. & Hatt, H. Ionic currents of cultured olfactory receptor neurons from antennae of male Manduca sexta. J. Neurosci.11, 956–965 (1991). PubMed PMC
Pézier, A., Acquistapace, A., Renou, M., Rospars, J.-P. & Lucas, P. Ca2+ stabilizes the membrane potential of moth olfactory receptor neurons at rest and is essential for their fast repolarization. Chem. Senses10.1093/chemse/bjl059 (2007). PubMed
Kay, L. M. & Stopfer, M. Information processing in the olfactory systems of insects and vertebrates. Semin. Cell Dev. Biol.17, 433–442 (2006). PubMed
Wilson, R. I. Early olfactory processing in Drosophila : mechanisms and principles. Annu. Rev. Neurosci.36, 217–241 (2013). PubMed PMC
Martinez, D. et al. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy. PLoS ONE8, 61220 (2013). PubMed PMC
Kim, A.J., Lazar, A.A. & Slutskiy, Y.B. Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations. eLife10.7554/eLife.06651 (2015). PubMed PMC
Raman, B., Joseph, J., Tang, J. & Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J. Neurosci.30, 1994–2006 (2010). PubMed PMC
Getz, W. M. & Akers, R. P. Olfactory response characteristics and tuning structure of placodes in the honey bee Apis mellifera L. Apidologie24, 195–217 (1993).
Tateishi, K., Watanabe, T., Nishino, H., Mizunami, M. & Watanabe, H. Silencing the odorant receptor co-receptor impairs olfactory reception in a sensillum-specific manner in the cockroach. iScience25, 104272 (2022). PubMed PMC
Montague, S. A., Mathew, D. & Carlson, J. R. Similar odorants elicit different behavioral and physiological responses, some supersustained. J. Neurosci.31, 7891–7899 (2011). PubMed PMC
Tichy, H., Hinterwirth, A. & Gingl, E. Olfactory receptors on the cockroach antenna signal odour ON and odour OFF by excitation. Eur. J. Neurosci.22, 3147–3160 (2005). PubMed
Burgstaller, M. & Tichy, H. Functional asymmetries in cockroach ON and OFF olfactory receptor neurons. J. Neurophysiol.105, 834–845 (2011). PubMed PMC
Geffen, M. N., Broome, B. M., Laurent, G. & Meister, M. Neural encoding of rapidly fluctuating odors. Neuron61, 570–586 (2009). PubMed
Kim, B. et al. Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality. eLife10.7554/eLife.79152 (2023). PubMed PMC
Christensen, T. A. & Hildebrand, J. G. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A160, 553–569 (1987). PubMed
Jarriault, D., Gadenne, C., Rospars, J.-P. & Anton, S. Quantitative analysis of sex-pheromone coding in the antennal lobe of the moth Agrotis ipsilon a tool to study network plasticity. J. Exp. Biol.212, 1191–1201 (2009). PubMed
Getahun, M. N., Olsson, S. B., Lavista-Llanos, S., Hansson, B. S. & Wicher, D. Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS ONE8, 58889 (2013). PubMed PMC
Mukunda, L., Miazzi, F., Sargsyan, V., Hansson, B.S. & Wicher, D. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors. Front. Cell. Neurosci.10.3389/fncel.2016.00028 (2016). PubMed PMC
Wicher, D. Tuning insect odorant receptors. Front. Cell. Neurosci.12, 94 (2018). PubMed PMC
Lundstrom, B. N., Hong, S., Higgs, M. H. & Fairhall, A. L. Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space. Neural Comput.20, 1239–1260 (2008). PubMed PMC
Platkiewicz, J. & Brette, R. A threshold equation for action potential initiation. PLoS Comput. Biol.6, 1000850 (2010). PubMed PMC
Platkiewicz, J. & Brette, R. Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput. Biol.7, 1001129 (2011). PubMed PMC
Kadala, A., Charreton, M., Jakob, I., Le Conte, Y. & Collet, C. A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. Neurotoxicology32, 320–330 (2011). PubMed
Fleidervish, I.A., Friedman, A. & Gutnick, M.J. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J. Physiol. (Lond.)10.1113/jphysiol.1996.sp021366 (1996). PubMed PMC
Kim, K. J. & Rieke, F. Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J. Neurosci.23, 1506–1516 (2003). PubMed PMC
Badel, L. et al. Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol.10.1152/jn.01107.2007 (2008). PubMed
Wang, L., Nomura, Y., Du, Y. & Dong, K. Differential effects of TipE and a TipE-homologous protein on modulation of gating properties of sodium channels from Drosophila melanogaster. PLoS ONE10.1371/journal.pone.0067551 (2013). PubMed PMC
Sarno, N., Hernandez-Clavijo, A., Boccaccio, A., Menini, A. & Pifferi, S. Slow inactivation of sodium channels contributes to short-term adaptation in vomeronasal sensory neurons. eNeuro9, 0471–21 (2022). PubMed PMC
Tadres, D., Wong, P.H., To, T., Moehlis, J. & Louis, M. Depolarization block in olfactory sensory neurons expands the dimensionality of odor encoding. Sci. Adv.10.1126/sciadv.ade7209 (2022). PubMed PMC
Jacob, V., Monsempès, C., Rospars, J.-P., Masson, J.-B. & Lucas, P. Olfactory coding in the turbulent realm. PLoS Comput. Biol.13, 1005870 (2017). PubMed PMC
Jayaram, V., Kadakia, N. & Emonet, T. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes. eLife10.7554/eLife.72415 (2022). PubMed PMC
Belmabrouk, H., Nowotny, T., Rospars, J.-P., Martinez, D. Interaction of cellular and network mechanisms for efficient pheromone coding in moths. Proc. Natl Acad. Sci. USA10.1073/pnas.1112367108 (2011). PubMed PMC
Cao, L.-H. et al. Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons. Proc. Natl Acad. Sci. USA10.1073/pnas.1518329113 (2016). PubMed PMC
Kennedy, J. S., Ludlow, A. R. & Sanders, C. J. Guidance system used in moth sex attraction. Nature288, 475–477 (1980).
Mafra-Neto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature369, 142–144 (1994).
Lei, H., Riffell, J. A., Gage, S. L. & Hildebrand, J. G. Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J. Biol.8, 21 (2009). PubMed PMC
Poitout, S. & Blues, R. Elevage de chenilles de vingt-huit espèces de Lépidoptères Noctuidae et de deux espèces d’Arctiidae sur milieu artificiel simple. Particularités de l’élevage selon les espèces. Ann. Zool. Ecol. Anim.6, 431–441 (1974).
Riffell, J. A. et al. Flower discrimination by pollinators in a dynamic chemical environment. Science344, 1515–1518 (2014). PubMed
Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci.26, 8727–8733 (2006). PubMed PMC
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn Res.12, 2825–2830 (2011).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2020). PubMed PMC
Stimberg, M., Brette, R. & Goodman, D.F. Brian 2, an intuitive and efficient neural simulator. eLife10.7554/eLife.47314 (2019). PubMed PMC
Gu, Y., Lucas, P. & Rospars, J.-P. Computational model of the insect pheromone transduction cascade. PLoS Comput. Biol.5, 1000321 (2009). PubMed PMC
Barta, T. et al. Code for communications biology manuscript. Zenodo10.5281/zenodo.13365266 (2024).