Residual Stress Build-Up in Aluminum Parts Fabricated with SLM Technology Using the Bridge Curvature Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural Funds of the European Union
19-03282S
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36079438
PubMed Central
PMC9457910
DOI
10.3390/ma15176057
PII: ma15176057
Knihovny.cz E-zdroje
- Klíčová slova
- aluminum alloys, bridge curvature method (BCM), finite element analysis (FEA), hole drilling method (HDM), residual stress, selective laser melting (SLM),
- Publikační typ
- časopisecké články MeSH
In metal 3D printing with Selective Laser Melting (SLM) technology, due to large thermal gradients, the residual stress (RS) distribution is complicated to predict and control. RS can distort the shape of the components, causing severe failures in fabrication or functionality. Thus, several research papers have attempted to quantify the RS by designing geometries that distort in a predictable manner, including the Bridge Curvature Method (BCM). Being different from the existing literature, this paper provides a new perspective of the RS build-up in aluminum parts produced with SLM using a combination of experiments and simulations. In particular, the bridge samples are printed with AlSi10Mg, of which the printing process and the RS distribution are experimentally assessed with the Hole Drilling Method (HDM) and simulated using ANSYS and Simufact Additive. Subsequently, on the basis of the findings, suggestions for improvements to the BCM are made. Throughout the assessment of BCM, readers can gain insights on how RS is built-up in metallic 3D-printed components, some available tools, and their suitability for RS prediction. These are essential for practitioners to improve the precision and functionality of SLM parts should any post-subtractive or additive manufacturing processes be employed.
Zobrazit více v PubMed
Kumar N., Mishra R., Baumann J. Residual Stresses in Friction Stir Welding. Elsevier Inc.; Amsterdam, The Netherlands: 2014. DOI
Konings R., Stoller R. Comprehensive Nuclear Materials. Elsevier Inc.; Amsterdam, The Netherlands: 2020.
Schajer G. Practical Residual Stress Measurement Methods. Wiley; New York, NY, USA: 2013. DOI
Li C., Liu Z., Fang X., Guo Y.B. Residual Stress in Metal Additive Manufacturing. Procedia CIRP. 2018;71:348–353. doi: 10.1016/j.procir.2018.05.039. DOI
Mercelis P., Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI
Acevedo R., Kantarowska K., Santos E.C., Fredel M.C. Residual stress measurement techniques for Ti6Al4V parts fabricated using selective laser melting: State of the art review. Rapid Prototyp. J. 2020;ahead-of-print doi: 10.1108/rpj-04-2019-0097. DOI
Kruth J., Deckers J., Yasa E., Wauthlé R. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proceedings of The Institution of Mechanical Engineers. Part B J. Eng. Manuf. 2012;226:980–991. doi: 10.1177/0954405412437085. DOI
Le Roux S., Salem M., Hor A. Improvement of the bridge curvature method to assess residual stresses in selective laser melting. Addit. Manuf. 2018;22:320–329. doi: 10.1016/j.addma.2018.05.025. DOI
Wang D., Wu S., Yang Y., Dou W., Deng S., Wang Z., Li S. The Effect of a Scanning Strategy on the Residual Stress of 316L Steel Parts Fabricated by Selective Laser Melting (SLM) Materials. 2018;11:1821. doi: 10.3390/ma11101821. PubMed DOI PMC
Salem M., Le Roux S., Hor A., Dour G. A new insight on the analysis of residual stresses related distortions in selective laser melting of Ti-6Al-4V using the improved bridge curvature method. Addit. Manuf. 2020;36:101586. doi: 10.1016/j.addma.2020.101586. DOI
Prime M., DeWald A. Practical Residual Stress Measurement Methods. Wiley; New York, NY, USA: 2013. The Contour Method. Chapter 5. DOI
Gouge M., Michaleris P. Thermo-Mechanical Modeling of Additive Manufacturing. Elsevier Inc.; Amsterdam, The Netherlands: 2018. DOI
Lu X., Lin X., Chiumenti M., Cerverac M., Hu Y., Ji X., Ma L., Yang H., Huang W. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by Directed Energy Deposition: Modelling and experimental calibration. Addit. Manuf. 2019;26:166–179. doi: 10.1016/j.addma.2019.02.001. DOI
Panda B., Sahoo S. Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results Phys. 2019;12:1372–1381. doi: 10.1016/j.rinp.2019.01.002. DOI
Ganeriwala R.K., Strantza M., King W.E., Clausen B., Phan T.Q., Levine L.E., Brown D.W., Hogge N.E. Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 2019;27:489–502. doi: 10.1016/j.addma.2020.101053. DOI
Promoppatum P., Uthaisangsuk V. Part scale estimation of residual stress development in laser powder bed fusion additive manufacturing of Inconel 718. Finite Elem. Anal. Des. 2021;189:103528. doi: 10.1016/j.finel.2021.103528. DOI
Setien I., Chiumenti M., van der Veen S., Sebastian M.S., Garciandía F., Echeverría A. Empirical methodology to determine inherent strains in additive manufacturing. Comput. Math. Appl. 2019;78:2282–2295. doi: 10.1016/j.camwa.2018.05.015. DOI
Chen Q., Liang X., Hayduke D., Liu J., Cheng L., Oskin J., Whitmore R., To A.C. An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering. Addit. Manuf. 2019;28:406–418. doi: 10.1016/j.addma.2019.05.021. DOI
Liang X., Dong W., Hinnebusch S., Chen Q., Tran H.T., Lemon J., Cheng L., Zhou Z. Inherent strain homogenization for fast residual deformation simulation of thin-walled lattice support structures built by laser powder bed fusion additive manufacturing. Addit. Manuf. 2020;32:101091. doi: 10.1016/j.addma.2020.101091. DOI
Dong W., Liang X., Chen Q., Hinnebusch S., Zhou Z., To A.C. A new procedure for implementing the modified inherent strain method with improved accuracy in predicting both residual stress and deformation for laser powder bed fusion. Addit. Manuf. 2021;47:102345. doi: 10.1016/j.addma.2021.102345. DOI
Rubben T., Revilla R., De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg. Corros. Sci. 2019;147:406–415. doi: 10.1016/j.corsci.2018.11.038. DOI
Fite J., Eswarappa Prameela S., Slotwinski J., Weihs T.P. Evolution of the microstructure and mechanical properties of additively manufactured AlSi10Mg during room temperature holds and low temperature aging. Addit. Manuf. 2020;36:101429. doi: 10.1016/j.addma.2020.101429. DOI
The Measurement of Residual Stresses by the Incremental Hole Drilling Technique. NPL Publications, Eprintspublications.Npl.Co.Uk. 2006. [(accessed on 14 October 2021)]. Available online: https://eprintspublications.npl.co.uk/2517/
Schajer G., Whitehead P. Hole-Drilling Method for Measuring Residual Stresses. Synth. SEM Lect. Exp. Mech. 2018;1:1–186. doi: 10.2200/s00818ed1v01y201712sem001. DOI
Ma N., Nakacho K., Ohta T., Ogawa N., Maekawa A., Huang H., Murakawa H. Inherent Strain Method for Residual Stress Measurement and Welding Distortion Prediction; Proceedings of the ASME 2016 35th International Conference On Ocean, Offshore And Arctic Engineering; Busan, Korea. 19–24 June 2016; DOI
Vega Sáenz A., Plazaola C., Banfield I., Rashed S., Murakawa H. Analysis and prediction of welding distortion in complex structures using elastic finite element method. Cienc. Y Tecnol. De Buques. 2012;6:35. doi: 10.25043/19098642.67. DOI
Simufact Engineering GmbH . Simufact Additive Tutorial. Simufact Engineering GmbH; Hamburg, Germany: 2020.
Macura P., Fojtik F., Hrncac R. Experimental Residual Stress Analysis of Welded Ball Valve; Proceedings of the 19th IMEKO World Congress 2009; Lisbon, Portugal. 6−11 September 2009.
Kolařík K., Pala Z., Ganev N., Fojtik F. Combining XRD with Hole-Drilling Method in Residual Stress Gradient Analysis of Laser Hardened C45 Steel. Adv. Mater. Res. 2014;996:277–282. doi: 10.4028/www.scientific.net/AMR.996.277. DOI
Čapek J., Pitrmuc Z., Kolařík K., Beránek L., Ganev N. Comparison of Parameters of Surface Integrity of Machined Duplex and Austenite Stainless Steels in Relation to Tool Geometry. Acta Polytech. CTU Proc. 2017;9:1. doi: 10.14311/APP.2017.9.0001. DOI
Topology Optimization of the Clutch Lever Manufactured by Additive Manufacturing