ChannelsDB: database of biomacromolecular tunnels and pores

. 2018 Jan 04 ; 46 (D1) : D399-D405.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29036719

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.

Zobrazit více v PubMed

Davids T., Schmidt M., Böttcher D., Bornscheuer U.T.. Strategies for the discovery and engineering of enzymes for biocatalysis. Curr. Opin. Chem. Biol. 2013; 17:215–220. PubMed

Thoden J.B., Holden H.M., Wesenberg G., Raushel F.M., Rayment I.. Structure of carbamoyl phosphate synthetase: a journey of 96 Å from substrate to product. Biochemistry. 1997; 36:6305–6316. PubMed

Wheeldon I., Minteer S.D., Banta S., Barton S.C., Atanassov P., Sigman M.. Substrate channelling as an approach to cascade reactions. Nat. Chem. 2016; 8:299–309. PubMed

Singh H., Arentson B.W., Becker D.F., Tanner J.J.. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:3389–3394. PubMed PMC

Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A., Saenger W.. Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 2009; 16:334–342. PubMed

Voss N.R., Gerstein M., Steitz T.A., Moore P.B.. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 2006; 360:893–906. PubMed

Nissen P. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000; 289:920–930. PubMed

Pravda L., Berka K., Svobodová Vařeková R., Sehnal D., Banáš P., Laskowski R.A., Koča J., Otyepka M.. Anatomy of enzyme channels. BMC Bioinformatics. 2014; 15:379. PubMed PMC

Cellular gatekeepers Nat. Struct. Mol. Biol. 2016; 23:463–463. PubMed

Guskov A., Nordin N., Reynaud A., Engman H., Lundbäck A.-K., Jong A.J.O., Cornvik T., Phua T., Eshaghi S.. Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc. Natl. Acad. Sci. U.S.A. 2012; 109:18459–18464. PubMed PMC

Leontiadou H., Mark A.E., Marrink S.-J.. Ion transport across transmembrane pores. Biophys. J. 2007; 92:4209–4215. PubMed PMC

Berneche S., Roux B.. Energetics of ion conduction through the K+ channel. Nature. 2001; 414:73. PubMed

Huang C.-S., Pedersen B.P., Stokes D.L.. Crystal structure of the potassium-importing KdpFABC membrane complex. Nature. 2017; 546:681–685. PubMed PMC

Neidle S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 2009; 19:239–250. PubMed

Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M., Wade R.C., Tsuda M., Nagata Y., Damborsky J.. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009; 5:727–733. PubMed

Urban P., Truan G., Pompon D.. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes. Biochim. Biophys. Acta - Gen. Subj. 2015; 1850:696–707. PubMed

Ebert M.C.C.J.C., Dürr S.L., A. Houle A., Lamoureux G., Pelletier J.N.. Evolution of P450 monooxygenases toward formation of transient channels and exclusion of nonproductive gases. ACS Catal. 2016; 6:7426–7437.

Hendrychova T., Berka K., Navratilova V., Anzenbacher P., Otyepka M.. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr. Drug Metab. 2012; 13:177–189. PubMed

Misura K.M.S., Morozov A. V., Baker D.. Analysis of anisotropic side-chain packing in proteins and application to high-resolution structure prediction. J. Mol. Biol. 2004; 342:651–664. PubMed

Pravda L., Berka K., Sehnal D., Otyepka M., Svobodová Vařeková R., Koča J.. Koča J, Svobodová Vařeková R, Pravda L, Berka K, Geidl S, Sehnal D, Otyepka M. Detection of Channels. Structural Bioinformatics Tools for Drug Design. 2016; Cham: Springer; 59–69.

Simões T., Lopes D., Dias S., Fernandes F., Pereira J., Jorge J., Bajaj C., Gomes A.. Geometric detection algorithms for cavities on protein surfaces in molecular graphics: a survey. Comput. Graph. Forum. 2017; doi:10.1111/cgf.13158. PubMed PMC

Smart O.S., Neduvelil J.G., Wang X., Wallace B.A., Sansom M.S.P.. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 1996; 14:354–360. PubMed

Petřek M., Otyepka M., Banáš P., Košinová P., Koča J., Damborský J.. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics. 2006; 7:316. PubMed PMC

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P. et al. . CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012; 8:e1002708. PubMed PMC

Petřek M., Košínová P., Koča J., Otyepka M.. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure. 2007; 15:1357–1363. PubMed

Sehnal D., Svobodová Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.-M., Otyepka M., Koča J.. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminform. 2013; 5:39. PubMed PMC

Berka K., Hanák O., Sehnal D., Banáš P., Navrátilová V., Jaiswal D., Ionescu C.-M., Svobodová Vařeková R., Koča J., Otyepka M.. MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012; 40:W222–W227. PubMed PMC

Krone M., Kozlíková B., Lindow N., Baaden M., Baum D., Parulek J., Hege H.-C., Viola I.. Visual analysis of biomolecular cavities: state of the art. Comput. Graph. Forum. 2016; 35:527–551.

Elbourne L.D.H., Tetu S.G., Hassan K.A., Paulsen I.T.. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017; 45:D320–D324. PubMed PMC

Saier M.H., Reddy V.S., Tsu B. V., Ahmed M.S., Li C., Moreno-Hagelsieb G.. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016; 44:D372–D379. PubMed PMC

Lomize M.A., Pogozheva I.D., Joo H., Mosberg H.I., Lomize A.L.. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012; 40:D370–D376. PubMed PMC

Kozma D., Simon I., Tusnády G.E.. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res. 2013; 41:D524–D529. PubMed PMC

Tordai H., Jakab K., Gyimesi G., András K., Brózik A., Sarkadi B., Hegedűs T.. ABCMdb reloaded: updates on mutations in ATP binding cassette proteins. Database. 2017; 2017, doi:10.1093/database/bax023. PubMed PMC

Anderson C.M., Kidd P.D., Eskandari S.. GATMD: aminobutyric acid transporter mutagenesis database. Database. 2010; 2010:baq028. PubMed PMC

Gallin W.J., Boutet P.A.. VKCDB: voltage-gated K+ channel database updated and upgraded. Nucleic Acids Res. 2011; 39:D362–D366. PubMed PMC

Ranjan R., Khazen G., Gambazzi L., Ramaswamy S., Hill S.L., Schürmann F., Markram H.. Channelpedia: an integrative and interactive database for ion channels. Front. Neuroinform. 2011; 5:36. PubMed PMC

Gohlke B.O., Preissner R., Preissner S.. SuperPain—a resource on pain-relieving compounds targeting ion channels. Nucleic Acids Res. 2014; 42:D1107–D1112. PubMed PMC

de Beer T.A.P., Berka K., Thornton J.M., Laskowski R.A.. PDBsum additions. Nucleic Acids Res. 2014; 42:D292–D296. PubMed PMC

Berman H., Henrick K., Nakamura H.. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003; 10:980. PubMed

Velankar S., van Ginkel G., Alhroub Y., Battle G.M., Berrisford J.M., Conroy M.J., Dana J.M., Gore S.P., Gutmanas A., Haslam P. et al. . PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res. 2016; 44:D385–D395. PubMed PMC

Wasmuth E.V., Lima C.D.. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2016; 45:1–12. PubMed

Furnham N., Holliday G.L., De Beer T.A.P., Jacobsen J.O.B., Pearson W.R., Thornton J.M.. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014; 42:1–5. PubMed PMC

Kyte J., Doolittle R.F.. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157:105–132. PubMed

Zimmerman J.M., Eliezer N., Simha R.. The characterization of amino acid sequences in proteins by statistical methods. J. Theor. Biol. 1968; 21:170–201. PubMed

Cid H., Bunster M., Canales M., Gazitúa F.. Hydrophobicity and structural classes in proteins. Protein Eng. Des. Sel. 1992; 5:373–375. PubMed

Jones D.T., Taylor W.R., Thornton J.M.. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992; 8:275–282. PubMed

Nightingale A., Antunes R., Alpi E., Bursteinas B., Gonzales L., Liu W., Luo J., Qi G., Turner E., Martin M.. The Proteins API: accessing key integrated protein and genome information. Nucleic Acids Res. 2017; 45:W539–W544. PubMed PMC

Velankar S., Dana J.M., Jacobsen J., van Ginkel G., Gane P.J., Luo J., Oldfield T.J., O’Donovan C., Martin M.-J., Kleywegt G.J.. SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res. 2013; 41:D483–D489. PubMed PMC

Otyepka M., Skopalík J., Anzenbacherová E., Anzenbacher P.. What common structural features and variations of mammalian P450s are known to date?. Biochim. Biophys. Acta. 2007; 1770:376–389. PubMed

Wade R.C., Winn P.J., Schlichting I, Sudarko. A survey of active site access channels in cytochromes P450. J. Inorg. Biochem. 2004; 98:1175–1182. PubMed

Paloncýová M., Navrátilová V., Berka K., Laio A., Otyepka M.. Role of enzyme flexibility in ligand access and egress to active site: bias-exchange metadynamics study of 1,3,7-trimethyluric acid in cytochrome P450 3A4. J. Chem. Theory Comput. 2016; 21:2101–2109. PubMed

Denisov I.G., Makris T.M., Sligar S.G., Schlichting I.. Structure and chemistry of cytochrome P450. Chem. Rev. 2005; 105:2253–2278. PubMed

Li W., Shen J., Liu G., Tang Y., Hoshino T.. Exploring coumarin egress channels in human cytochrome p450 2a6 by random acceleration and steered molecular dynamics simulations. Proteins Struct. Funct. Bioinforma. 2011; 79:271–281. PubMed

Fishelovitch D., Shaik S., Wolfson H.J., Nussinov R.. Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. J. Phys. Chem. B. 2009; 113:13018–13025. PubMed PMC

Otyepka M., Berka K., Anzenbacher P.. Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450?. Curr. Drug Metab. 2012; 13:130–142. PubMed

Scott E.E., He Y.Q., Halpert J.R.. Substrate routes to the buried active site may vary among cytochromes P450: mutagenesis of the F−G region in P450 2B1. Chem. Res. Toxicol. 2002; 15:1407–1413. PubMed

Porubsky P.R., Battaile K.P., Scott E.E.. Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J. Biol. Chem. 2010; 285:22282–22290. PubMed PMC

Porubsky P.R., Meneely K.M., Scott E.E.. Structures of human cytochrome P-450 2E1. J. Biol. Chem. 2008; 283:33698–33707. PubMed PMC

Cojocaru V., Winn P.J., Wade R.C.. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta. 2007; 1770:390–401. PubMed

Yuan F., Wang S., Larson R.G.. Potentials of mean force and escape times of surfactants from micelles and hydrophobic surfaces using molecular dynamics simulations. Langmuir. 2015; 31:1336–1343. PubMed

Harries W.E.C., Akhavan D., Miercke L.J.W., Khademi S., Stroud R.M.. The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:14045–14050. PubMed PMC

Stansfeld P.J., Goose J.E., Caffrey M., Carpenter E.P., Parker J.L., Newstead S., Sansom M.S.P.. MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure. 2015; 23:1350–1361. PubMed PMC

Solus J.F., Arietta B.J., Harris J.R., Sexton D.P., Steward J.Q., McMunn C., Ihrie P., Mehall J.M., Edwards T.L., Dawson E.P.. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics. 2004; 5:895–931. PubMed

Flanagan J.U., Maréchal J.-D., Ward R., Kemp C.A., McLaughlin L.A., Sutcliffe M.J., Roberts G.C.K., Paine M.J.I., Wolf C.R.. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite. Biochem. J. 2004; 380:353–360. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...