Anatomy of enzyme channels
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25403510
PubMed Central
PMC4245731
DOI
10.1186/s12859-014-0379-x
PII: s12859-014-0379-x
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie genetika MeSH
- enzymy chemie genetika MeSH
- iontové kanály fyziologie MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- enzymy MeSH
- iontové kanály MeSH
BACKGROUND: Enzyme active sites can be connected to the exterior environment by one or more channels passing through the protein. Despite our current knowledge of enzyme structure and function, surprisingly little is known about how often channels are present or about any structural features such channels may have in common. RESULTS: Here, we analyze the long channels (i.e. >15 Å) leading to the active sites of 4,306 enzyme structures. We find that over 64% of enzymes contain two or more long channels, their typical length being 28 Å. We show that amino acid compositions of the channel significantly differ both to the composition of the active site, surface and interior of the protein. CONCLUSIONS: The majority of enzymes have buried active sites accessible via a network of access channels. This indicates that enzymes tend to have buried active sites, with channels controlling access to, and egress from, them, and that suggests channels may play a key role in helping determine enzyme substrate.
Zobrazit více v PubMed
Huang X, Holden HM, Raushel FM. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem. 2001;70:149–180. doi: 10.1146/annurev.biochem.70.1.149. PubMed DOI
Park J, Czapla L, Amaro RE. Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding. J Chem Inf Model. 2013;53:2047–2056. doi: 10.1021/ci400225w. PubMed DOI PMC
Sgrignani J, Magistrato A. Influence of the membrane lipophilic environment on the structure and on the substrate access/egress routes of the human aromatase enzyme. A computational study. J Chem Inf Model. 2012;52:1595–1606. doi: 10.1021/ci300151h. PubMed DOI
Madrona Y, Hollingsworth SA, Khan B, Poulos TL. P450cin active site water: implications for substrate binding and solvent accessibility. Biochemistry. 2013;52:5039–5050. doi: 10.1021/bi4006946. PubMed DOI PMC
Cui Y-L, Zhang J-L, Zheng Q-C, Niu R-J, Xu Y, Zhang H-X, Sun C-C. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels. Chemistry. 2013;19:549–557. doi: 10.1002/chem.201202627. PubMed DOI
Lee SJ, McCormick MS, Lippard SJ, Cho U-S. Control of substrate access to the active site in methane monooxygenase. Nature. 2013;494:380–384. doi: 10.1038/nature11880. PubMed DOI PMC
Pryor EE, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME. Structure of the integral membrane protein CAAX protease Ste24p. Science. 2013;339:1600–1604. doi: 10.1126/science.1232048. PubMed DOI PMC
Xu S, Mueser TC, Marnett LJ, Funk MO. Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure. 2012;20:1490–1497. doi: 10.1016/j.str.2012.06.003. PubMed DOI PMC
Guskov A, Nordin N, Reynaud A, Engman H, Lundbäck A-K, Jong AJO, Cornvik T, Phua T, Eshaghi S. Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc Natl Acad Sci U S A. 2012;109:18459–18464. doi: 10.1073/pnas.1210076109. PubMed DOI PMC
Otyepka M, Berka K, Anzenbacher P. Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450? Curr Drug Metab. 2012;13:130–142. doi: 10.2174/138920012798918372. PubMed DOI
Rengachari S, Aschauer P, Schittmayer M, Mayer N, Gruber K, Breinbauer R, Birner-Gruenberger R, Dreveny I, Oberer M. Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. J Biol Chem. 2013;288:31093–31104. doi: 10.1074/jbc.M113.491415. PubMed DOI PMC
Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. Determination of ligand pathways in globins: apolar tunnels versus polar gates. J Biol Chem. 2012;287:33163–33178. doi: 10.1074/jbc.M112.392258. PubMed DOI PMC
Voss NR, Gerstein M, Steitz TA, Moore PB. The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol. 2006;360:893–906. doi: 10.1016/j.jmb.2006.05.023. PubMed DOI
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated Ion channels: new insights into neurological disorders and ligand recognition. Chem Rev. 2012;112:6285–6318. doi: 10.1021/cr3000829. PubMed DOI
Kasianowicz JJ. Introduction to Ion channels and disease. Chem Rev. 2012;112:6215–6217. doi: 10.1021/cr300444k. PubMed DOI
Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem Biol. 2013;8:1195–1204. doi: 10.1021/cb400030n. PubMed DOI
Eisenberg B. Ionic channels in biological membranes: natural nanotubes. Acc Chem Res. 1998;4842:117–123. doi: 10.1021/ar950051e. DOI
Wallace B. Gramicidin channels and pores. Annu Rev Biophys Biophys Chem. 1990;19:127–157. doi: 10.1146/annurev.bb.19.060190.001015. PubMed DOI
Roux B. Computational studies of the gramicidin channel. Acc Chem Res. 2002;35:366–375. doi: 10.1021/ar010028v. PubMed DOI
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of Ion channels. Chem Rev. 2012;112:6250–6284. doi: 10.1021/cr3002609. PubMed DOI PMC
Kraut DA, Carroll KS, Herschlag D. Challenges in enzyme mechanism and energetics. Annu Rev Biochem. 2003;72:517–571. doi: 10.1146/annurev.biochem.72.121801.161617. PubMed DOI
Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM. Electrostatic basis for enzyme catalysis. Chem Rev. 2006;106:3210–3235. doi: 10.1021/cr0503106. PubMed DOI
Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. How enzymes work: analysis by modern rate theory and computer simulations. Science. 2004;303:186–195. doi: 10.1126/science.1088172. PubMed DOI
Benkovic S, Hammes-Schiffer S. A perspective on enzyme catalysis. Science. 2003;301:1196–1202. doi: 10.1126/science.1085515. PubMed DOI
Porter CT, Bartlett GJ, Thornton JM. The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004;32(Database issue):D129–D133. doi: 10.1093/nar/gkh028. PubMed DOI PMC
Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. doi: 10.1038/nchembio.205. PubMed DOI
Stepankova V, Khabiri M, Brezovsky J, Pavelka A, Sykora J, Amaro M, Minofar B, Prokop Z, Hof M, Ettrich R, Chaloupkova R, Damborsky J. Expansion of access tunnels and active-site cavities influence activity of haloalkane dehalogenases in organic cosolvents. Chembiochem. 2013;14:890–897. doi: 10.1002/cbic.201200733. PubMed DOI
Skopalík J, Anzenbacher P, Otyepka M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B. 2008;112:8165–8173. doi: 10.1021/jp800311c. PubMed DOI
Hendrychová T, Berka K, Navrátilová V, Anzenbacher P, Otyepka M. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr Drug Metab. 2012;13:177–189. doi: 10.2174/138920012798918408. PubMed DOI
Sehnal D, Svobodová Vařeková R, Berka K, Pravda L, Navrátilová V, Banáš P, Ionescu C-M, Otyepka M, Koča J. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform. 2013;5:39. doi: 10.1186/1758-2946-5-39. PubMed DOI PMC
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. PubMed DOI
Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968;21:170–201. doi: 10.1016/0022-5193(68)90069-6. PubMed DOI
Webby CJ, Lott JS, Baker HM, Baker EN, Parker EJ. Crystallization and preliminary X-ray crystallographic analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Mycobacterium tuberculosis. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2005;61(Pt 4):403–406. doi: 10.1107/S1744309105007931. PubMed DOI PMC
Houborg K, Harris P, Petersen J, Rowland P, Poulsen J-CN, Schneider P, Vind J, Larsen S. Impact of the physical and chemical environment on the molecular structure of Coprinus cinereus peroxidase. Acta Crystallogr Sect D: Biol Crystallogr. 2003;D59:989–996. doi: 10.1107/S0907444903006772. PubMed DOI
Lundell TK, Mäkelä MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol. 2010;50:5–20. doi: 10.1002/jobm.200900338. PubMed DOI
Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH. Directed evolution of a fungal peroxidase. Nat Biotechnol. 1999;17:379–384. doi: 10.1038/7939. PubMed DOI
Holliday GL, Mitchell JBO, Thornton JM. Understanding the functional roles of amino acid residues in enzyme catalysis. J Mol Biol. 2009;390:560–577. doi: 10.1016/j.jmb.2009.05.015. PubMed DOI
Dill KA. Dominant forces in protein folding. Biochemistry. 1990;29:7133–7155. doi: 10.1021/bi00483a001. PubMed DOI
Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699:35–44. doi: 10.1016/j.bbapap.2004.02.017. PubMed DOI
Furnham N, Holliday GL, de Beer TAP, Jacobsen JOB, Pearson WR, Thornton JM. The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014;42:D485–D489. doi: 10.1093/nar/gkt1243. PubMed DOI PMC
Berka K, Hanák O, Sehnal D, Banáš P, Navrátilová V, Jaiswal D, Ionescu C-M, Svobodová Vařeková R, Koča J, Otyepka M. MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012;40(Web Server issue):W222–W227. doi: 10.1093/nar/gks363. PubMed DOI PMC
Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007;35(Database issue):D301–D303. doi: 10.1093/nar/gkl971. PubMed DOI PMC
ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era
MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)
ChannelsDB: database of biomacromolecular tunnels and pores