Anatomy of enzyme channels

. 2014 Nov 18 ; 15 (1) : 379. [epub] 20141118

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25403510

BACKGROUND: Enzyme active sites can be connected to the exterior environment by one or more channels passing through the protein. Despite our current knowledge of enzyme structure and function, surprisingly little is known about how often channels are present or about any structural features such channels may have in common. RESULTS: Here, we analyze the long channels (i.e. >15 Å) leading to the active sites of 4,306 enzyme structures. We find that over 64% of enzymes contain two or more long channels, their typical length being 28 Å. We show that amino acid compositions of the channel significantly differ both to the composition of the active site, surface and interior of the protein. CONCLUSIONS: The majority of enzymes have buried active sites accessible via a network of access channels. This indicates that enzymes tend to have buried active sites, with channels controlling access to, and egress from, them, and that suggests channels may play a key role in helping determine enzyme substrate.

Zobrazit více v PubMed

Huang X, Holden HM, Raushel FM. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem. 2001;70:149–180. doi: 10.1146/annurev.biochem.70.1.149. PubMed DOI

Park J, Czapla L, Amaro RE. Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding. J Chem Inf Model. 2013;53:2047–2056. doi: 10.1021/ci400225w. PubMed DOI PMC

Sgrignani J, Magistrato A. Influence of the membrane lipophilic environment on the structure and on the substrate access/egress routes of the human aromatase enzyme. A computational study. J Chem Inf Model. 2012;52:1595–1606. doi: 10.1021/ci300151h. PubMed DOI

Madrona Y, Hollingsworth SA, Khan B, Poulos TL. P450cin active site water: implications for substrate binding and solvent accessibility. Biochemistry. 2013;52:5039–5050. doi: 10.1021/bi4006946. PubMed DOI PMC

Cui Y-L, Zhang J-L, Zheng Q-C, Niu R-J, Xu Y, Zhang H-X, Sun C-C. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels. Chemistry. 2013;19:549–557. doi: 10.1002/chem.201202627. PubMed DOI

Lee SJ, McCormick MS, Lippard SJ, Cho U-S. Control of substrate access to the active site in methane monooxygenase. Nature. 2013;494:380–384. doi: 10.1038/nature11880. PubMed DOI PMC

Pryor EE, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME. Structure of the integral membrane protein CAAX protease Ste24p. Science. 2013;339:1600–1604. doi: 10.1126/science.1232048. PubMed DOI PMC

Xu S, Mueser TC, Marnett LJ, Funk MO. Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure. 2012;20:1490–1497. doi: 10.1016/j.str.2012.06.003. PubMed DOI PMC

Guskov A, Nordin N, Reynaud A, Engman H, Lundbäck A-K, Jong AJO, Cornvik T, Phua T, Eshaghi S. Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc Natl Acad Sci U S A. 2012;109:18459–18464. doi: 10.1073/pnas.1210076109. PubMed DOI PMC

Otyepka M, Berka K, Anzenbacher P. Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450? Curr Drug Metab. 2012;13:130–142. doi: 10.2174/138920012798918372. PubMed DOI

Rengachari S, Aschauer P, Schittmayer M, Mayer N, Gruber K, Breinbauer R, Birner-Gruenberger R, Dreveny I, Oberer M. Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. J Biol Chem. 2013;288:31093–31104. doi: 10.1074/jbc.M113.491415. PubMed DOI PMC

Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. Determination of ligand pathways in globins: apolar tunnels versus polar gates. J Biol Chem. 2012;287:33163–33178. doi: 10.1074/jbc.M112.392258. PubMed DOI PMC

Voss NR, Gerstein M, Steitz TA, Moore PB. The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol. 2006;360:893–906. doi: 10.1016/j.jmb.2006.05.023. PubMed DOI

Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated Ion channels: new insights into neurological disorders and ligand recognition. Chem Rev. 2012;112:6285–6318. doi: 10.1021/cr3000829. PubMed DOI

Kasianowicz JJ. Introduction to Ion channels and disease. Chem Rev. 2012;112:6215–6217. doi: 10.1021/cr300444k. PubMed DOI

Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem Biol. 2013;8:1195–1204. doi: 10.1021/cb400030n. PubMed DOI

Eisenberg B. Ionic channels in biological membranes: natural nanotubes. Acc Chem Res. 1998;4842:117–123. doi: 10.1021/ar950051e. DOI

Wallace B. Gramicidin channels and pores. Annu Rev Biophys Biophys Chem. 1990;19:127–157. doi: 10.1146/annurev.bb.19.060190.001015. PubMed DOI

Roux B. Computational studies of the gramicidin channel. Acc Chem Res. 2002;35:366–375. doi: 10.1021/ar010028v. PubMed DOI

Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of Ion channels. Chem Rev. 2012;112:6250–6284. doi: 10.1021/cr3002609. PubMed DOI PMC

Kraut DA, Carroll KS, Herschlag D. Challenges in enzyme mechanism and energetics. Annu Rev Biochem. 2003;72:517–571. doi: 10.1146/annurev.biochem.72.121801.161617. PubMed DOI

Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM. Electrostatic basis for enzyme catalysis. Chem Rev. 2006;106:3210–3235. doi: 10.1021/cr0503106. PubMed DOI

Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. How enzymes work: analysis by modern rate theory and computer simulations. Science. 2004;303:186–195. doi: 10.1126/science.1088172. PubMed DOI

Benkovic S, Hammes-Schiffer S. A perspective on enzyme catalysis. Science. 2003;301:1196–1202. doi: 10.1126/science.1085515. PubMed DOI

Porter CT, Bartlett GJ, Thornton JM. The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004;32(Database issue):D129–D133. doi: 10.1093/nar/gkh028. PubMed DOI PMC

Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. doi: 10.1038/nchembio.205. PubMed DOI

Stepankova V, Khabiri M, Brezovsky J, Pavelka A, Sykora J, Amaro M, Minofar B, Prokop Z, Hof M, Ettrich R, Chaloupkova R, Damborsky J. Expansion of access tunnels and active-site cavities influence activity of haloalkane dehalogenases in organic cosolvents. Chembiochem. 2013;14:890–897. doi: 10.1002/cbic.201200733. PubMed DOI

Skopalík J, Anzenbacher P, Otyepka M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B. 2008;112:8165–8173. doi: 10.1021/jp800311c. PubMed DOI

Hendrychová T, Berka K, Navrátilová V, Anzenbacher P, Otyepka M. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr Drug Metab. 2012;13:177–189. doi: 10.2174/138920012798918408. PubMed DOI

Sehnal D, Svobodová Vařeková R, Berka K, Pravda L, Navrátilová V, Banáš P, Ionescu C-M, Otyepka M, Koča J. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform. 2013;5:39. doi: 10.1186/1758-2946-5-39. PubMed DOI PMC

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. PubMed DOI

Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968;21:170–201. doi: 10.1016/0022-5193(68)90069-6. PubMed DOI

Webby CJ, Lott JS, Baker HM, Baker EN, Parker EJ. Crystallization and preliminary X-ray crystallographic analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Mycobacterium tuberculosis. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2005;61(Pt 4):403–406. doi: 10.1107/S1744309105007931. PubMed DOI PMC

Houborg K, Harris P, Petersen J, Rowland P, Poulsen J-CN, Schneider P, Vind J, Larsen S. Impact of the physical and chemical environment on the molecular structure of Coprinus cinereus peroxidase. Acta Crystallogr Sect D: Biol Crystallogr. 2003;D59:989–996. doi: 10.1107/S0907444903006772. PubMed DOI

Lundell TK, Mäkelä MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol. 2010;50:5–20. doi: 10.1002/jobm.200900338. PubMed DOI

Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH. Directed evolution of a fungal peroxidase. Nat Biotechnol. 1999;17:379–384. doi: 10.1038/7939. PubMed DOI

Holliday GL, Mitchell JBO, Thornton JM. Understanding the functional roles of amino acid residues in enzyme catalysis. J Mol Biol. 2009;390:560–577. doi: 10.1016/j.jmb.2009.05.015. PubMed DOI

Dill KA. Dominant forces in protein folding. Biochemistry. 1990;29:7133–7155. doi: 10.1021/bi00483a001. PubMed DOI

Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699:35–44. doi: 10.1016/j.bbapap.2004.02.017. PubMed DOI

Furnham N, Holliday GL, de Beer TAP, Jacobsen JOB, Pearson WR, Thornton JM. The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014;42:D485–D489. doi: 10.1093/nar/gkt1243. PubMed DOI PMC

Berka K, Hanák O, Sehnal D, Banáš P, Navrátilová V, Jaiswal D, Ionescu C-M, Svobodová Vařeková R, Koča J, Otyepka M. MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012;40(Web Server issue):W222–W227. doi: 10.1093/nar/gks363. PubMed DOI PMC

Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007;35(Database issue):D301–D303. doi: 10.1093/nar/gkl971. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...