Topology Optimization of the Clutch Lever Manufactured by Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural Funds of the European Union
SP2023/088
Ministry of Education, Youth and Sports of the Czech Republic
SP2023/087
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
37176392
PubMed Central
PMC10179946
DOI
10.3390/ma16093510
PII: ma16093510
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, AlSi10Mg, FEM, SLM, additive manufacturing, finite element method, selective laser melting, topology optimization,
- Publikační typ
- časopisecké články MeSH
This article aims to review a redesign approach of a student racing car's clutch lever component, which was topologically optimized and manufactured by Additive Manufacturing (AM). Finite Element Method (FEM) analysis was conducted before and after a Topology Optimization (TO) process in order to achieve equivalent stiffness and the desired safety factor for the optimized part. The redesigned clutch lever was manufactured by using AM-Selective Laser Melting (SLM) and printed from powdered aluminum alloy AlSi10Mg. The final evaluation of the study deals with the experimental test and comparison of the redesigned clutch lever with the existing part which was used in the previous racing car. Using TO as a main redesign tool and AM brought significant changes to the optimized part, especially the following: reduced mass of the component (10%), increased stiffness, kept safety factor above the 3.0 value and ensured the more aesthetic design and a good surface quality. Moreover, using TO and AM gave the opportunity to consolidate multi-part assembly into a single component manufactured by one manufacturing process that reduced the production time. The experimental results justified the simulation results and proved that even though the applied load was almost 1.5× higher than the assumed one, the maximum von Mises stress on the component was still below the yield limit of 220 MPa.
Zobrazit více v PubMed
Bendsoe M.P., Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer; Berlin, Germany: 2003. pp. 1–68.
Sotola M., Marsalek P., Rybansky D., Fusek M., Gabriel D. Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam. Symmetry. 2021;13:712. doi: 10.3390/sym13040712. DOI
Zhu J.H., Zhang W.H., Xia L. Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comput. Methods Eng. 2016;23:595–622. doi: 10.1007/s11831-015-9151-2. DOI
Hanush S.S., Manjaiah M. Topology optimization of aerospace part to enhance the performance by Finite manufacturing process. Mater. Today Proc. 2022;62:7373–7378. doi: 10.1016/j.matpr.2022.02.074. DOI
Prathyusha A.L.R., Babu G.R. A review on additive manufacturing and topology optimization process for weight reduction studies in various industrial applications. Mater. Today Proc. 2022;62:109–117. doi: 10.1016/j.matpr.2022.02.604. DOI
Jankovics D., Barari A. Customization of Automotive Structural Components using Additive Manufacturing and Topology Optimization. IFAC-Pap. 2019;52:212–217. doi: 10.1016/j.ifacol.2019.10.066. DOI
Bao D.W., Yan X., Snooks R., Xie Y. Bioinspired Generative Architectural Design Form-Finding and Advanced Robotic Fabrication Based on Structural Performance 2020. In: Yuan P., Xie M., Leach N., Yao J., Wang X., editors. Architectural Intelligence, Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication. Springer; Singapore: 2019. pp. 147–170. DOI
Li Y., Lai Y., Lu G., Yan F., Wei P., Xie Y.M. Innovative design of long-span steel–concrete composite bridge using multi-material topology optimization. Eng. Struct. 2022;269:114838. doi: 10.1016/j.engstruct.2022.114838. DOI
Reis P., Volpini M., Maia J.P., Guimarães I.B., Evelise C., Monteiro M., Rubio J.C.C. Resting hand splint model from topology optimization to be produced by additive manufacturing. Rapid Prototyp. J. 2022;28:216–225. doi: 10.1108/RPJ-07-2020-0176. DOI
Muzalewska M. Methodology of Multicriterial Optimization of Geometric Features of an Orthopedic Implant. Appl. Sci. 2021;11:11070. doi: 10.3390/app112211070. DOI
Zhang W., Zhu J., Gao T. Topology Optimization in Engineering Structure Design. Elsevier; Amsterdam, The Netherlands: 2016. DOI
Xia L. Multiscale Structural Topology Optimization. Elsevier; London, UK: 2016. DOI
Wylezol M. Topological Optimization in Mechanical Constructions—An Example of Application; Proceedings of the 5th International Scientific and Business Conference—Future Engineering; Oltarzew, Poland. 29–30 May 2019; DOI
Skarka W., Pabian T., Wąsik M. Topology Optimization Approach in a Process of Designing of Composite Shell Structures; Proceedings of the 25th ISPE Inc. International Conference on Transdisciplinary Engineering; Modena, Italy. 3–6 July 2018; DOI
Korkmaz M.E., Gupta M.K., Robak G., Moj K., Krolczyk G.M., Kuntoğlu M. Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges. J. Manuf. Process. 2022;81:1040–1063. doi: 10.1016/j.jmapro.2022.07.051. DOI
Milewski J.O. From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry. Springer International Publishing AG; Cham, Switzerland: 2017. Additive Manufacturing of Metals; pp. 7–33.
3D Printing Center PROTOLAB. [(accessed on 22 August 2022)]. Available online: https://protolab.cz/
Student Racing Competition Rules. [(accessed on 22 August 2022)]. Available online: https://formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v0.9.pdf.
Mesicek J., Pagac M., Petru J., Novak P., Hajnys J., Kutiova K. Topological optimization of the formula student bell crank. MM Sci. J. 2019:2964–2968. doi: 10.17973/MMSJ.2019_10_201893. DOI
Markovits T., Szederkény B. Investigation of generative design for powder bed fusion technology in case of Formula Student race car components using Ti6Al4V alloy. J. Manuf. Process. 2022;80:220–231. doi: 10.1016/j.jmapro.2022.05.058. DOI
Jancar L., Pagac M., Mesicek J., Stefek P. Design Procedure of a Topologically Optimized Scooter Frame Part. Symmetry. 2020;12:755. doi: 10.3390/sym12050755. DOI
Mertens A., Delahaye J., Dedry O., Vertruyen B., Tchuindjang J.T., Habraken A.M. Microstructure and Properties of SLM AlSi10Mg: Understanding the Influence of the Local Thermal History. Procedia Manuf. 2020;47:1089–1095. doi: 10.1016/j.promfg.2020.04.121. DOI
Atomised Aluminium Alloy Powder. [(accessed on 25 August 2022)]. Available online: https://www.metal-am.com/articles/selecting-atomised-aluminium-alloy-powders-for-the-metal-3d-printing-process/
Park T.-H., Baek M.-S., Hyer H., Sohn Y., Lee K.-A. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process. Mater. Charact. 2021;176:111113. doi: 10.1016/j.matchar.2021.111113. DOI
Bai S., Perevoshchikova N., Sha Y., Wu X. The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Appl. Sci. 2019;9:583. doi: 10.3390/app9030583. DOI
Read N., Wang W., Essa K., Attallah M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015;65:417–424. doi: 10.1016/j.matdes.2014.09.044. DOI
Martin J., Yahata B., Hundley J., Mayer J.A., Schaedler T.A., Pollock T.M. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369. doi: 10.1038/nature23894. PubMed DOI
Muhammad M., Nezhadfar P.D., Thompson S., Saharan A., Phan N., Shamsaei N. A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys. Int. J. Fatigue. 2021;146:106165. doi: 10.1016/j.ijfatigue.2021.106165. DOI
Ma Q.-P., Mesicek J., Fojtik F., Hajnys J., Krpec P., Pagac M., Petru J. Residual Stress Build-Up in Aluminum Parts Fabricated with SLM Technology Using the Bridge Curvature Method. Materials. 2022;15:6057. doi: 10.3390/ma15176057. PubMed DOI PMC
Pan W., Ye Z., Zhang Y., Liu Y., Liang B., Zhai Z. Research on Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting. Materials. 2022;15:2528. doi: 10.3390/ma15072528. PubMed DOI PMC
Li W., Li S., Liu J., Zhang A., Zhou Y., Wei Q., Yan C., Shi Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A. 2016;663:116–125. doi: 10.1016/j.msea.2016.03.088. DOI
Mesicek J., Cegan T., Ma Q.-P., Halama R., Skotnicova K., Hajnys J., Jurica J., Krpec P., Pagac M. Effect of artificial aging on the strength, hardness, and residual stress of SLM AlSi10Mg parts prepared from the recycled powder. Mater. Sci. Eng. 2022;855:143900. doi: 10.1016/j.msea.2022.143900. DOI
RENISHAW: Materials Catalog (MDS) Wotton-Under-Edg, Great Britain: Renishaw. 2022. [(accessed on 25 August 2022)]. Available online: https://www.renishaw.cz/cs/katalogove-listy-aditivni-vyroba--17862.
User Guide, Altair OptiStruct. [(accessed on 14 September 2022)]. Available online: https://2021.help.altair.com/2021/hwsolvers/os/topics/solvers/os/topology_opt_design_variables_r.htm.
Koutromanos I., McClure J., Roy C. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2018.
Sefene E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022;63:250–274. doi: 10.1016/j.jmsy.2022.04.002. DOI
DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI
Kruth J., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005;11:26–36. doi: 10.1108/13552540510573365. DOI
Brandt M., Sun S., Leary M., Feih S., Elambasseril J., Liu Q. High-Value SLM Aerospace Components: From Design to Manufacture. Adv. Mater. Res. 2013;633:135–147. doi: 10.4028/www.scientific.net/AMR.633.135. DOI
Venkata K.A., Uppaluri R., Schob B., Zopp C., Kordaß R., Bohlen J., Höfemann M., Kasprowicz M., Pawlak A., Chlebus E. Accurate numerical prediction of thermo-mechanical behaviour and phase fractions in SLM components of advanced high strength steels for automotive applications. Technol. Lightweight Struct. 2022;5:41–50. doi: 10.21935/tls.v5i1.145. DOI
Yadroitsev I., Krakhmalev P., Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution. J. Alloy. Compd. 2014;583:404–409. doi: 10.1016/j.jallcom.2013.08.183. DOI
Kobir M.H., Yavari R., Riensche A., Bevans B., Castro L., Cole K., Rao P. Prediction of recoater crash in laser powder bed fusion additive manufacturing using graph theory thermomechanical modeling. Prog. Addit. Manuf. 2022 doi: 10.1007/s40964-022-00331-5. DOI
Gogolewski D., Bartkowiak T., Kozior T., Zmarzły P. Multiscale Analysis of Surface Texture Quality of Models Manufactured by Laser Powder-Bed Fusion Technology and Machining from 316L Steel. Materials. 2021;14:2794. doi: 10.3390/ma14112794. PubMed DOI PMC
Liang Z., Hengzhi G., Jingxian X., Yang C., Chunjiang S. Research on Simufact simulation data processing system based on QT and MySQL. Appl. Math. Nonlinear Sci. 2021;6:291–298. doi: 10.2478/amns.2021.2.00042. DOI
Pagac M., Hajnys J., Halama R., Aldabash T., Mesicek J., Jancar L., Jansa J. Prediction of Model Distortion by FEM in 3D Printing via the Selective Laser Melting of Stainless Steel AISI 316L. Appl. Sci. 2021;11:1656. doi: 10.3390/app11041656. DOI
Jia H., Sun H., Wang H., Wu Y., Wang H. Size effect in selective laser melting additive manufacturing of 700 mm large component. J. Manuf. Process. 2022;75:125–137. doi: 10.1016/j.jmapro.2022.01.011. DOI
Xie D., Lv F., Yang Y., Shen L., Tian Z., Shuai C., Chen B., Zhao J. A Review on Distortion and Residual Stress in Additive Manufacturing. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022;1:100039. doi: 10.1016/j.cjmeam.2022.100039. DOI
Adamczak S., Zmarzły P., Kozior T., Gogolewski D. Assessment of Roundness and Waviness Deviations of Elements Produced by Selective Laser Sintering Technology; Proceedings of the 23rd International Conference Engineering Mechanics; Svratka, Czech Republic. 15–18 May 2017.