Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements

. 2021 Nov 16 ; 11 (11) : . [epub] 20211116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835852

Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.

Zobrazit více v PubMed

Pavithra D., Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants--issues and prevention. Biomed. Mater. 2008;3:034003. doi: 10.1088/1748-6041/3/3/034003. PubMed DOI

Qi K., Daoud W.A., Xin J.H., Mak C.L., Tang W., Cheung W.P. Self-cleaning cotton. J. Mater. Chem. 2006;16:4567–4574. doi: 10.1039/b610861j. DOI

Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–138. doi: 10.1016/S0140-6736(01)05321-1. PubMed DOI

Park K.D., Kim Y.S., Han D.K., Kim Y.H., Lee E.H., Suh H., Choi K.S. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19:851–859. doi: 10.1016/S0142-9612(97)00245-7. PubMed DOI

Roosjen A., van der Mei H.C., Busscher H.J., Norde W. Microbial adhesion to poly (ethylene oxide) brushes: Influence of polymer chain length and temperature. Langmuir. 2004;20:10949–10955. doi: 10.1021/la048469l. PubMed DOI

Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Razatos A., Ong Y.L., Boulay F., Elbert D.L., Hubbell J.A., Sharma M.M., Georgiou G. Force measurements between bacteria and poly(ethylene glycol)-coated surfaces. Langmuir. 2000;16:9155–9158. doi: 10.1021/la000818y. DOI

Ostuni E., Chapman R.G., Liang M.N., Meluleni G., Pier G., Ingber D.E., Whitesides G.M. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir. 2001;17:6336–6343. doi: 10.1021/la010552a. DOI

Banerjee I., Pangule R.C., Kane R.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mat. 2011;23:690–718. doi: 10.1002/adma.201001215. PubMed DOI

Lichter J.A., Thompson M.T., Delgadillo M., Nishikawa T., Rubner M.F., Van Vliet K.J. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules. 2008;9:1571–1578. doi: 10.1021/bm701430y. PubMed DOI

Whitehead K.A., Verran J. The effect of surface topography on the retention of microorganisms. Food Bioprod. Proc. 2006;84:253–259. doi: 10.1205/fbp06035. DOI

Tallet L., Gribova V., Ploux L., Vrana N.E., Lavalle P. New smart antimicrobial hydrogels, nanomaterials, and coatings: Earlier action, more specific, better dosing? Adv. Healthc. Mater. 2021;10:2001199. doi: 10.1002/adhm.202001199. PubMed DOI

Adlhart C., Verran J., Azevedo N.F., Olmez H., Keinanen-Toivola M.M., Gouveia I., Melo L.F., Crijns F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018;99:239–249. doi: 10.1016/j.jhin.2018.01.018. PubMed DOI

Song B., Zhang E., Han X., Zhu H., Shi Y., Cao Z. Engineering and application perspectives on designing an antimicrobial surface. ACS Appl. Mater. Int. 2020;12:21330–21341. doi: 10.1021/acsami.9b19992. PubMed DOI PMC

Hoch M. Organotin compounds in the environment an overview. Appl. Geochem. 2001;16:719–743. doi: 10.1016/S0883-2927(00)00067-6. DOI

Wang S., Gao Y., Jin Q., Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater. Sci. 2020;8:6825–6839. doi: 10.1039/D0BM00974A. PubMed DOI

Schmidmaier G., Lucke M., Wildemann B., Haas N.P., Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: A review. Injury. 2006;37:S105–S112. doi: 10.1016/j.injury.2006.04.016. PubMed DOI

Stigter M., Bezemer J., De Groot K., Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J. Control. Release. 2004;99:127–137. doi: 10.1016/j.jconrel.2004.06.011. PubMed DOI

Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. Mirobial biofilms. Annu. Rev. Microbiol. 1995;49:711–745. doi: 10.1146/annurev.mi.49.100195.003431. PubMed DOI

Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33:637–652. doi: 10.1016/j.tibtech.2015.09.002. PubMed DOI

Bozja J., Sherrill J., Michielsen S., Stojiljkovic I. Porphyrin-based, light-activated antimicrobial materials. J. Polym. Sci. Pol. Chem. 2003;41:2297–2303. doi: 10.1002/pola.10773. DOI

Hucknall A., Rangarajan S., Chilkoti A. In pursuit of zero: Polymer brushes that resist the adsorption of proteins. Adv. Mat. 2009;21:2441–2446. doi: 10.1002/adma.200900383. DOI

Statz A.R., Meagher R.J., Barron A.E., Messersmith P.B. New peptidomimetic polymers for antifouling surfaces. J. Am. Chem. Soc. 2005;127:7972–7973. doi: 10.1021/ja0522534. PubMed DOI

Kumar A., Vemula P.K., Ajayan P.M., John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008;7:236–241. doi: 10.1038/nmat2099. PubMed DOI

Amiji M., Park K. Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity. J. Biomater. Sci.-Polym. Ed. 1993;4:217–234. doi: 10.1163/156856293X00537. PubMed DOI

Prime K.L., Whitesides G.M. Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces. Science. 1991;252:1164–1167. doi: 10.1126/science.252.5009.1164. PubMed DOI

Deng L., Mrksich M., Whitesides G.M. Self-assembled monolayers of alkanethiolates presenting tri (propylene sulfoxide) groups resist the adsorption of protein. J. Am. Chem. Soc. 1996;118:5136–5137. doi: 10.1021/ja960461d. DOI

Jeon S.I., Lee J.H., Andrade J.D., De Gennes P. Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J. Colloid Interface Sci. 1991;142:149–158. doi: 10.1016/0021-9797(91)90043-8. DOI

Cheng G., Xue H., Zhang Z., Chen S., Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. 2008;120:8963–8966. doi: 10.1002/ange.200803570. PubMed DOI

Kurt P., Wood L., Ohman D.E., Wynne K.J. Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir. 2007;23:4719–4723. doi: 10.1021/la063718m. PubMed DOI

Murata H., Koepsel R.R., Matyjaszewski K., Russell A.J. Permanent, non-leaching antibacterial surface 2: How high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28:4870–4879. doi: 10.1016/j.biomaterials.2007.06.012. PubMed DOI

Asuri P., Karajanagi S.S., Kane R.S., Dordick J.S. Polymer–nanotube–enzyme composites as active antifouling films. Small. 2007;3:50–53. doi: 10.1002/smll.200600312. PubMed DOI

Kim Y.D., Dordick J.S., Clark D.S. Siloxane-based biocatalytic films and paints for use as reactive coatings. Biotechnol. Bioeng. 2001;72:475–482. doi: 10.1002/1097-0290(20010220)72:4<475::AID-BIT1009>3.0.CO;2-F. PubMed DOI

Wu Z., Xu Q., Wang J., Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. J. Mater. Sci. Technol. 2010;26:20–26. doi: 10.1016/S1005-0302(10)60003-5. DOI

Barthlott W., Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8. doi: 10.1007/s004250050096. DOI

Gao L., McCarthy T.J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir. 2006;22:2966–2967. doi: 10.1021/la0532149. PubMed DOI

Shang H.M., Wang Y., Limmer S.J., Chou T.P., Takahashi K., Cao G.Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films. 2005;472:37–43. doi: 10.1016/j.tsf.2004.06.087. DOI

Coulson S.R., Woodward I., Badyal J.P.S., Brewer S.A., Willis C. Super-repellent composite fluoropolymer surfaces. J. Phys. Chem. B. 2000;104:8836–8840. doi: 10.1021/jp0000174. DOI

Xiao X., Zhao W., Liang J., Sauer K., Libera M. Self-defensive antimicrobial biomaterial surfaces. Colloids Surf. B Biointerfaces. 2020;192:110989. doi: 10.1016/j.colsurfb.2020.110989. PubMed DOI PMC

Stuart M.A.C., Huck W.T., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V., Urban M., et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010;9:101–113. doi: 10.1038/nmat2614. PubMed DOI

Urban A.M., Urban M.W. Stimuli-Responsive Polymeric Films and Coatings. 1st ed. American Chemical Society; Washington, DC, USA: 2005. pp. 107–121.

Hao X., Chen S., Qin D., Zhang M., Li W., Fan J., Wang C., Dong M., Zhang J., Cheng F., et al. Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;108:110361. doi: 10.1016/j.msec.2019.110361. PubMed DOI

Zhang J., Zhou R., Wang H., Jiang X., Wang H., Yan S., Yin J., Luan S. Bacterial activation of surface-tethered antimicrobial peptides for the facile construction of a surface with self-defense. Appl. Surf. Sci. 2019;497:143480. doi: 10.1016/j.apsusc.2019.07.222. DOI

Buchegger S., Kamenac A., Fuchs S., Herrmann R., Houdek P., Gorzelanny C., Obermeier A., Heller S., Burgkart R., Stritzker B., et al. Smart antimicrobial efficacy employing pH-sensitive ZnO-doped diamond-like carbon coatings. Sci. Rep. 2019;9:17246. doi: 10.1038/s41598-019-53521-7. PubMed DOI PMC

Gao G., Jiang Y.W., Jia H.R., Wu F.G. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials. 2019;188:83–95. doi: 10.1016/j.biomaterials.2018.09.045. PubMed DOI

Qu J., Zhao X., Liang Y., Zhang T., Ma P.X., Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185–199. doi: 10.1016/j.biomaterials.2018.08.044. PubMed DOI

Edis Z., Bloukh S.H. Facile synthesis of antimicrobial aloe vera-“smart” triiodide-PVP biomaterials. Biomimetics. 2020;5:45. doi: 10.3390/biomimetics5030045. PubMed DOI PMC

Ista L.K., Pérez-Luna V.H., López G.P. Surface-grafted, environmentally sensitive polymers for biofilm release. Appl. Environ. Microbiol. 1999;65:1603–1609. doi: 10.1128/AEM.65.4.1603-1609.1999. PubMed DOI PMC

Ista L.K., Mendez S., Lopez G.P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling. 2010;26:111–118. doi: 10.1080/08927010903383455. PubMed DOI

Fu H., Hong X., Wan A., Batteas J.D., Bergbreiter D.E. Parallel effects of cations on PNIPAM graft wettability and PNIPAM solubility. ACS Appl. Mater. Int. 2010;2:452–458. doi: 10.1021/am9007006. PubMed DOI

Guselnikova O., Marque S.R., Tretyakov E.V., Mares D., Jerabek V., Audran G., Joly J.P., Trusova M., Svorcik V., Lyutakov O., et al. Unprecedented plasmon-induced nitroxide-mediated polymerization (PI-NMP): A method for preparation of functional surfaces. J. Mater. Chem. A. 2019;7:12414–12419. doi: 10.1039/C9TA01630A. DOI

Erzina M., Guselnikova O., Postnikov P., Elashnikov R., Kolska Z., Miliutina E., Svorcik V., Lyutakov O. Plasmon-polariton induced,“from surface” RAFT polymerization, as a way toward creation of grafted polymer films with thickness precisely controlled by self-limiting mechanism. Adv. Mater. Interfaces. 2018;5:1801042. doi: 10.1002/admi.201801042. DOI

Ista L.K., Mendez S., Pérez-Luna V.H., López G.P. Synthesis of poly (N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir. 2001;17:2552–2555. doi: 10.1021/la001257d. DOI

Guselnikova O., Postnikov P., Kalachyova Y., Kolska Z., Libansky M., Zima J., Svorcik V., Lyutakov O. Large-scale, ultrasensitive, highly reproducible and reusable smart SERS platform based on PNIPAm-grafted gold grating. ChemNanoMat. 2017;3:135–144. doi: 10.1002/cnma.201600284. DOI

Guselnikova O., Svanda J., Postnikov P., Kalachyova Y., Svorcik V., Lyutakov O. Fast and reproducible wettability switching on functionalized PVDF/PMMA surface controlled by external electric field. Adv. Mater. Interfaces. 2017;4:1600886. doi: 10.1002/admi.201600886. DOI

Guselnikova O., Postnikov P., Sajdl P., Elashnikov R., Švorčík V., Lyutakov O. Functional and switchable amphiphilic pmma surface prepared by 3D selective modification. Adv. Mater. Interfaces. 2018;5:1701182. doi: 10.1002/admi.201701182. DOI

Cunliffe D., de las Heras Alarcón C., Peters V., Smith J.R., Alexander C. Thermoresponsive surface-grafted poly (N−isopropylacrylamide) copolymers: Effect of phase transitions on protein and bacterial attachment. Langmuir. 2003;19:2888–2899. doi: 10.1021/la026358l. DOI

De las Heras Alarcón C., Twaites B., Cunliffe D., Smith J.R., Alexander C. Grafted thermo-and pH responsive co-polymers: Surface-properties and bacterial adsorption. Int. J. Pharm. 2005;295:77–91. doi: 10.1016/j.ijpharm.2005.01.037. PubMed DOI

Elashnikov R., Slepička P., Rimpelova S., Ulbrich P., Švorčík V., Lyutakov O. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017;72:293–300. doi: 10.1016/j.msec.2016.11.028. PubMed DOI

Elashnikov R., Lyutakov O., Kalachyova Y., Solovyev A., Svorcik V. Tunable release of silver nanoparticles from temperature-responsive polymer blends. React. Funct. Polym. 2015;93:163–169. doi: 10.1016/j.reactfunctpolym.2015.06.010. DOI

Elashnikov R., Mares D., Podzimek T., Švorčík V., Lyutakov O. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: Towards the high detection limit and Raman quantitative measurements. Analyst. 2017;142:2974–2981. doi: 10.1039/C7AN00419B. PubMed DOI

Andersson D.I., Hughes D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010;8:260–271. doi: 10.1038/nrmicro2319. PubMed DOI

Baptista P.V., McCusker M.P., Carvalho A., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front. Microbiol. 2018;9:1441. doi: 10.3389/fmicb.2018.01441. PubMed DOI PMC

Kumar P., Kizhakkedathu J.N., Straus S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8:4. doi: 10.3390/biom8010004. PubMed DOI PMC

Aymonier C., Schlotterbeck U., Antonietti L., Zacharias P., Thomann R., Tiller J.C., Mecking S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 2002;2002:3018–3019. doi: 10.1039/b208575e. PubMed DOI

Lawson M.C., Shoemaker R., Hoth K.B., Bowman C.N., Anseth K.S. Polymerizable vancomycin derivatives for bactericidal biomaterial surface modification: Structure—Function evaluation. Biomacromolecules. 2009;10:2221–2234. doi: 10.1021/bm900410a. PubMed DOI PMC

Narayan R., Nayak U.Y., Raichur A.M., Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. doi: 10.3390/pharmaceutics10030118. PubMed DOI PMC

Yang J., Shen D., Zhou L., Li W., Li X., Yao C., Wang R., El-Toni A.M., Zhang F., Zhao D. Spatially confined fabrication of core–shell gold nanocages@ mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013;25:3030–3037. doi: 10.1021/cm401115b. DOI

Wang W., Lu Y., Zhu H., Cao Z. Superdurable coating fabricated from a double-sided tape with long term “zero” bacterial adhesion. Adv. Mater. 2017;29:1606506. doi: 10.1002/adma.201606506. PubMed DOI PMC

Wang W., Lu Y., Xie J., Zhu H., Cao Z. A zwitterionic macro-crosslinker for durable non-fouling coatings. Chem. Commun. 2016;52:4671–4674. doi: 10.1039/C6CC00109B. PubMed DOI

Wang G., Wang L., Lin W., Wang Z., Zhang J., Ji F., Ma G., Yuan Z., Chen S. Development of robust and recoverable ultralow-fouling coatings based on poly(carboxybetaine) ester analogue. ACS Appl. Mater. Interfaces. 2015;7:16938–16945. doi: 10.1021/acsami.5b05162. PubMed DOI

Wang X., Li X., Yang X., Lei K., Wang L. The innovative fabrication of nano-natural antimicrobial agent@ polymeric microgels-TiO2 hybrid films capable of absorbing UV and antibacterial on touch screen panel. Colloid Surf. B-Biointerfaces. 2021;197:111410. doi: 10.1016/j.colsurfb.2020.111410. PubMed DOI

Guo S., Zhang Q., Wang D., Wang L., Lin F., Wilson P., Haddleton D.M. Bioinspired coating of TiO2 nanoparticles with antimicrobial polymers by Cu(0)-LRP: Grafting to vs. grafting from. Polym. Chem. 2017;8:6570–6580. doi: 10.1039/C7PY01471F. DOI

Page K., Wilson M., Parkin I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Polym. Sci. Pol. Chem. 2009;19:3819–3831. doi: 10.1039/b818698g. DOI

Woan K., Pyrgiotakis G., Sigmund W. Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 2009;21:2233–2239. doi: 10.1002/adma.200802738. DOI

Piccirillo C., Perni S., Gil-Thomas J., Prokopovich P., Wilson M., Pratten J., Parkin I.P. Antimicrobial activity of methylene blue and toluidine blue O covalently bound to a modified silicone polymer surface. J. Mater. Chem. 2009;19:6167–6171. doi: 10.1039/b905495b. DOI

Wu P., Xie R., Imlay J.A., Shang J.K. Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Appl. Catal. B-Environ. 2009;88:576–581. doi: 10.1016/j.apcatb.2008.12.019. PubMed DOI PMC

Visai L., De Nardo L., Punta C., Melone L., Cigada A., Imbriani M., Arciola C.R. Titanium oxide antibacterial surfaces in biomedical devices. Int. J. Artif. Org. 2011;34:929–946. doi: 10.5301/ijao.5000050. PubMed DOI

Rehman S., Ullah R., Butt A., Gohar N.D. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009;170:560–569. doi: 10.1016/j.jhazmat.2009.05.064. PubMed DOI

Wilson M. Light-activated antimicrobial coating for the continuous disinfection of surfaces. Infect. Control. Hosp. Epidemiol. 2003;24:782–784. doi: 10.1086/502136. PubMed DOI

Parsons C., McCoy C.P., Gorman S.P., Jones D.S., Bell S.E., Brady C., McGlinchey S.M. Anti-infective photodynamic biomaterials for the prevention of intraocular lens-associated infectious endophthalmitis. Biomaterials. 2009;30:597–602. doi: 10.1016/j.biomaterials.2008.10.015. PubMed DOI

Perni S., Piccirillo C., Pratten J., Prokopovich P., Chrzanowski W., Parkin I.P., Wilson M. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials. 2009;30:89–93. doi: 10.1016/j.biomaterials.2008.09.020. PubMed DOI

Prasad G.K., Agarwal G.S., Singh B., Rai G.P., Vijayaraghavan R. Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J. Hazard. Mater. 2009;165:506–510. doi: 10.1016/j.jhazmat.2008.10.009. PubMed DOI

Chung C.J., Lin H.I., Chou C.M., Hsieh P.Y., Hsiao C.H., Shi Z.Y., He J.L. Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film. Surf. Coat. Technol. 2009;203:1081–1085. doi: 10.1016/j.surfcoat.2008.09.036. DOI

Lyutakov O., Hejna O., Solovyev A., Kalachyova Y., Svorcik V. Polymethylmethacrylate doped with porphyrin and silver nanoparticles as light-activated antimicrobial material. RSC Adv. 2014;4:50624–50630. doi: 10.1039/C4RA08385G. DOI

Gaufrès E., Tang N.W., Lapointe F., Cabana J., Nadon M.A., Cottenye N., Raymond F., Szkopek T., Martel R. Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging. Nat. Photonics. 2014;8:72–78. doi: 10.1038/nphoton.2013.309. DOI

Xu J.W., Yao K., Xu Z.K. Nanomaterials with a photothermal effect for antibacterial activities: An overview. Nanoscale. 2019;11:8680–8691. doi: 10.1039/C9NR01833F. PubMed DOI

Liu Y., Li F., Guo Z., Xiao Y., Zhang Y., Sun X., Zhe T., Cao Y., Wang L., Lu Q., et al. Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections. Chem. Eng. J. 2020;382:122990. doi: 10.1016/j.cej.2019.122990. DOI

Phan T.T.V., Huynh T.C., Oh J. Photothermal responsive porous membrane for treatment of infected wound. Polymers. 2019;11:1679. doi: 10.3390/polym11101679. PubMed DOI PMC

Deng H., Sun J., Yu Z., Guo Z., Xu C. Low-intensity near-infrared light-triggered spatiotemporal antibiotics release and hyperthermia by natural polysaccharide-based hybrid hydrogel for synergistic wound disinfection. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021;118:111530. doi: 10.1016/j.msec.2020.111530. PubMed DOI

Naskar A., Lee S., Kim K.S. Au–ZnO conjugated black phosphorus as a near-infrared light-triggering and recurrence-suppressing nanoantibiotic platform against Staphylococcus aureus. Pharmaceutics. 2021;13:52. doi: 10.3390/pharmaceutics13010052. PubMed DOI PMC

Liu Y., Xiao Y., Cao Y., Guo Z., Li F., Wang L. Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria. Adv. Funct. Mater. 2020;30:2003196. doi: 10.1002/adfm.202003196. DOI

Lin J., He Z., Liu F., Feng J., Huang C., Sun X., Deng H. Hybrid hydrogels for synergistic periodontal antibacterial treatment with sustained drug release and NIR-responsive photothermal effect. Int. J. Nanomed. 2020;15:5377–5387. doi: 10.2147/IJN.S248538. PubMed DOI PMC

Kalachyova Y., Olshtrem A., Guselnikova O.A., Postnikov P.S., Elashnikov R., Ulbrich P., Rimpelová S., Švorčík V., Lyutakov O. Synthesis, characterization, and antimicrobial activity of near-IR photoactive functionalized gold multibranched nanoparticles. ChemistryOpen. 2017;6:254–260. doi: 10.1002/open.201600159. PubMed DOI PMC

Elashnikov R., Lyutakov O., Ulbrich P., Svorcik V. Light-activated polymethylmethacrylate nanofibers with antibacterial activity. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016;64:229–235. doi: 10.1016/j.msec.2016.03.047. PubMed DOI

<named-content content-type="background:white">Yu H., Peng Y., Yang Y., Li Z.Y. Plasmon-enhanced light–matter interactions and applications. NPJ Computat. Mater. 2019;5:45. doi: 10.1038/s41524-019-0184-1. DOI

Elashnikov R., Radocha M., Panov I., Rimpelova S., Ulbrich P., Michalcova A., Lyutakov O. Porphyrin silver nanoparticles hybrids: Synthesis, characterization and antibacterial activity. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;102:192–199. doi: 10.1016/j.msec.2019.04.029. PubMed DOI

Chandna S., Thakur N.S., Kaur R., Bhaumik J. Lignin–bimetallic nanoconjugate doped pH-responsive hydrogels for laser-assisted antimicrobial photodynamic therapy. Biomacromolecules. 2020;21:3216–3230. doi: 10.1021/acs.biomac.0c00695. PubMed DOI

Zhang L., Wang Y., Wang J., Wang Y., Chen A., Wang C., Zhang Y. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection. ACS Appl. Mater. Interfaces. 2019;11:300–310. doi: 10.1021/acsami.8b18146. PubMed DOI

Jardim K.V., Palomec-Garfias A.F., Andrade B.Y.G., Chaker J.A., Báo S.N., Márquez-Beltrán C., Moya S.E., Parize A.L., Sousa M.H. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018;92:184–195. doi: 10.1016/j.msec.2018.06.039. PubMed DOI

Bigham A., Aghajanian A.H., Behzadzadeh S., Sokhani Z., Shojaei S., Kaviani Y., Hassanzadeh-Tabrizia S.A. Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;99:83–95. doi: 10.1016/j.msec.2019.01.096. PubMed DOI

Kost J., Wolfrum J., Langer R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 1987;21:1367–1373. doi: 10.1002/jbm.820211202. PubMed DOI

Saslawski O., Weingarten C., Benoit J.P., Couvreur P. Magnetically responsive microspheres for the pulsed delivery of insulin. Life Sci. 1988;42:1521–1528. doi: 10.1016/0024-3205(88)90009-4. PubMed DOI

Hu S.H., Liu T.Y., Liu D.M., Chen S.Y. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules. 2007;40:6786–6788. doi: 10.1021/ma0707584. DOI

Liu T.Y., Hu S.H., Liu T.Y., Liu D.M., Chen S.Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir. 2006;22:5974–5978. doi: 10.1021/la060371e. PubMed DOI

Liu T.Y., Hu S.H., Liu K.H., Liu D.M., Chen S.Y. Preparation and characterization of smart magnetic hydrogels and its use for drug release. J. Magn. Magn. Mater. 2006;304:e397–e399. doi: 10.1016/j.jmmm.2006.01.203. DOI

Fang C., Kievit F.M., Veiseh O., Stephen Z.R., Wang T., Lee D., Ellenbogen R.G., Zhang M. Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J. Control. Release. 2012;162:233–241. doi: 10.1016/j.jconrel.2012.06.028. PubMed DOI PMC

Kennedy S., Roco C., Déléris A., Spoerri P., Cezar C., Weaver J., Vandengburgh H., Mooney D. Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials. 2018;161:179–189. doi: 10.1016/j.biomaterials.2018.01.049. PubMed DOI PMC

Gebreyohannes A.Y., Mazzei R., Poerio T., Aimar P., Vankelecom I.F., Giorno L. Pectinases immobilization on magnetic nanoparticles and their anti-fouling performance in a biocatalytic membrane reactor. RSC Adv. 2016;6:98737–98747. doi: 10.1039/C6RA20455D. DOI

Elbourne A., Cheeseman S., Atkin P., Truong N.P., Syed N., Mohiuddin M., Esrafilzadeh D., Cozzolino D., McConville C., Dickey M.D., et al. Antibacterial liquid metals: Biofilm treatment via magnetic activation. ACS Nano. 2020;14:802–817. doi: 10.1021/acsnano.9b07861. PubMed DOI

Cheeseman S., Elbourne A., Kariuki R., Ramarao A.V., Zavabeti A., Syed N., Christofferson A.J., Kwon K.Y., Jung W., Dickey M.D., et al. Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. J. Mat. Chem. B. 2020;8:10776–10787. doi: 10.1039/D0TB01655A. PubMed DOI

Li S., Wei C., Lv Y. Preparation and application of magnetic responsive materials in bone tissue engineering. Curr. Stem Cell Res. Ther. 2020;15:428–440. doi: 10.2174/1574888X15666200101122505. PubMed DOI

Abdeen A.A., Lee J., Bharadwaj N.A., Ewoldt R.H., Kilian K.A. Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv. Healthc. Mater. 2016;5:2536–2544. doi: 10.1002/adhm.201600349. PubMed DOI PMC

Corbin E.A., Vite A., Peyster E.G., Bhoopalam M., Brandimarto J., Wang X., Bennett A.I., Clark A.T., Cheng X., Turner K.T., et al. Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Appl. Mater. Interfaces. 2019;11:20603–20614. doi: 10.1021/acsami.9b02446. PubMed DOI

Huang J., Liu W., Liang Y., Li L., Duan L., Chen J., Zhu F., Lai Y., Zhu W., You W., et al. Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018;87:70–77. doi: 10.1016/j.msec.2018.02.003. PubMed DOI

Zhao Y., Fan T., Chen J., Su J., Zhi X., Pan P., Zhang Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloid Surf. B-Biointerfaces. 2019;174:70–79. doi: 10.1016/j.colsurfb.2018.11.003. PubMed DOI

Durán-Guerrero J.G., Martínez-Rodríguez M.A., Garza-Navarro M.A., González-González V.A., Torres-Castro A., De La Rosa J.R. Magnetic nanofibrous materials based on CMC/PVA polymeric blends. Carbohydr. Polym. 2018;200:289–296. doi: 10.1016/j.carbpol.2018.08.015. PubMed DOI

Brüggemann D., Michel J., Suter N., de Aguiar M.G., Maas M. Wet-spinning of magneto-responsive helical chitosan microfibers. Beilstein J. Nanotechnol. 2020;11:991–999. doi: 10.3762/bjnano.11.83. PubMed DOI PMC

Liu H., Yang J., Yin Y., Qi H. A facile strategy to fabricate polysaccharide-based magnetic hydrogel based on enamine bond. Chin. J. Chem. 2020;38:1263–1268. doi: 10.1002/cjoc.201900523. DOI

Wang H., Zhang Z., Wang Z., Liang Y., Cui Z., Zhao J., Li X., Ren L. Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil. ACS Appl. Mater. Interfaces. 2019;11:28478–28486. doi: 10.1021/acsami.9b07941. PubMed DOI

Yang C., Wu L., Li G. Magnetically responsive superhydrophobic surface: In situ reversible switching of water droplet wettability and adhesion for droplet manipulation. ACS Appl. Mater. Interfaces. 2018;10:20150–20158. doi: 10.1021/acsami.8b04190. PubMed DOI

Li D., Huang J., Han G., Guo Z. A facile approach to achieve bioinspired PDMS@Fe3O4 fabric with switchable wettability for liquid transport and water collection. J. Mater. Chem. A. 2018;6:22741–22748. doi: 10.1039/C8TA08993K. DOI

Zeng H., Zhang Y., Mao S., Nakajima H., Uchiyama K. A reversibly electro-controllable polymer brush for electro-switchable friction. J. Mater. Chem. C. 2017;5:5877–5881. doi: 10.1039/C7TC01624G. DOI

Drotlef D.M., Blümler P., Papadopoulos P., Del Campo A. Magnetically actuated micropatterns for switchable wettability. ACS Appl. Mater. Interfaces. 2014;6:8702–8707. doi: 10.1021/am5014776. PubMed DOI

Grigoryev A., Tokarev I., Kornev K.G., Luzinov I., Minko S. Superomniphobic magnetic microtextures with remote wetting control. J. Am. Chem. Soc. 2012;134:12916–12919. doi: 10.1021/ja305348n. PubMed DOI

Uppalapati D., Boyd B.J., Garg S., Travas-Sejdic J., Svirskis D. Conducting polymers with defined micro-or nanostructures for drug delivery. Biomaterials. 2016;111:149–162. doi: 10.1016/j.biomaterials.2016.09.021. PubMed DOI

Kolosnjaj-Tabi J., Gibot L., Fourquaux I., Golzio M., Rols M.P. Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 2019;138:56–67. doi: 10.1016/j.addr.2018.10.017. PubMed DOI

Seyfoddin A., Chan A., Chen W.T., Rupenthal I.D., Waterhouse G.I.N., Svirskis D. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur. J. Pharm. Biopharm. 2015;94:419–426. doi: 10.1016/j.ejpb.2015.06.018. PubMed DOI

Calori I.R., Braga G., de Jesus P.D.C.C., Bi H., Tedesco A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020;129:109621. doi: 10.1016/j.eurpolymj.2020.109621. DOI

Zhu M., Hao Y., Ma X., Feng L., Zhai Y., Ding Y., Cheng G. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system. RSC Adv. 2019;9:12667–12674. doi: 10.1039/C9RA00800D. PubMed DOI PMC

Cirillo G., Curcio M., Spizzirri U.G., Vittorio O., Tucci P., Picci N., Iemma F., Hampel S., Nicoletta F.P. Carbon nanotubes hybrid hydrogels for electrically tunable release of curcumin. Eur. Polym. J. 2017;90:1–12. doi: 10.1016/j.eurpolymj.2017.03.011. DOI

Servant A., Bussy C., Al-Jamal K., Kostarelos K. Design, engineering and structural integrity of electro-responsive carbon nanotube-based hydrogels for pulsatile drug release. J. Mater. Chem. B. 2013;1:4593–4600. doi: 10.1039/c3tb20614a. PubMed DOI

Bijukumar D., Choonara Y.E., Kumar P., du Toit L.C., Pillay V. An electro-conductive fluid as a responsive implant for the controlled stimuli-release of diclofenac sodium. Pharm. Dev. Technol. 2015;21:875–886. doi: 10.3109/10837450.2015.1073742. PubMed DOI

Samanta D., Mehrotra R., Margulis K., Zare R.N. On-demand electrically controlled drug release from resorbable nanocomposite films. Nanoscale. 2017;9:16429–16436. doi: 10.1039/C7NR06443H. PubMed DOI

Sutani K., Kaetsu I., Uchida K., Matsubara Y. Stimulus responsive drug release from polymer gel.: Controlled release of ionic drug from polyampholyte gel. Radiat. Phys. Chem. 2002;64:331–336. doi: 10.1016/S0969-806X(01)00505-9. DOI

Shah S.A.A., Firlak M., Berrow S.R., Halcovitch N.R., Baldock S.J., Yousafzai B.M., Hathout R.M., Hardy J.G. Electrochemically enhanced drug delivery using polypyrrole films. Materials. 2018;11:1123. doi: 10.3390/ma11071123. PubMed DOI PMC

Hou H.L., Cardo L., Mancino D., Arnaiz B., Criado A., Prato M. Electrochemically controlled cleavage of imine bonds on a graphene platform: Towards new electro-responsive hybrids for drug release. Nanoscale. 2020;12:23824–23830. doi: 10.1039/D0NR04102E. PubMed DOI

Tohgha U.N., Alvino E.L., Jarnagin C.C., Iacono S.T., Godman N.P. Electrowetting behavior and digital microfluidic applications of fluorescent, polymer-encapsulated quantum dot nanofluids. ACS Appl. Mater. Interfaces. 2019;11:28487–28498. doi: 10.1021/acsami.9b07983. PubMed DOI

Trick J.L., Song C., Wallace E.J., Sansom M.S. Voltage gating of a biomimetic nanopore: Electrowetting of a hydrophobic barrier. ACS Nano. 2017;11:1840–1847. doi: 10.1021/acsnano.6b07865. PubMed DOI

Han Z., Tay B., Tan C., Shakerzadeh M., Ostrikov K. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites. ACS Nano. 2009;3:3031–3036. doi: 10.1021/nn900846p. PubMed DOI

Sun D., Böhringer K.F. Self-cleaning: From bio-inspired surface modification to MEMS/microfluidics system integration. Micromachines. 2019;10:101. doi: 10.3390/mi10020101. PubMed DOI PMC

Děkanovský L., Elashnikov R., Kubiková M., Vokatá B., Švorčík V., Lyutakov O. Dual-action flexible antimicrobial material: Switchable self-cleaning, antifouling, and smart drug release. Adv. Funct. Mater. 2019;29:1901880. doi: 10.1002/adfm.201901880. DOI

Elashnikov R., Fitl P., Svorcik V., Lyutakov O. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow. Appl. Surf. Sci. 2017;394:562–568. doi: 10.1016/j.apsusc.2016.10.074. DOI

Lyutakov O., Huttel I., Siegel J., Švorčík V. Regular surface grating on doped polymer induced by laser scanning. Appl. Phys. Lett. 2009;95:173103. doi: 10.1063/1.3254210. DOI

Lyutakov O., Tůma J., Huttel I., Prajzler V., Siegel J., Švorčík V. Polymer surface patterning by laser scanning. Appl. Phys. B-Lasers Opt. 2013;110:539–549. doi: 10.1007/s00340-012-5291-3. DOI

Lyutakov O., Hüttel I., Prajzler V., Jeřábek V., Jančárek A., Hnatowicz V., Švorčík V. Pattern formation in PMMA film induced by electric field. J. Polym. Sci. Pt. B-Polym. Phys. 2009;47:1131–1135. doi: 10.1002/polb.21718. DOI

Lyutakov O., Tuma J., Prajzler V., Huttel I., Hnatowicz V., Švorčík V. Preparation of rib channel waveguides on polymer in electric field. Thin Solid Films. 2010;519:1452–1457. doi: 10.1016/j.tsf.2010.08.019. DOI

Lin I.T., Choi Y.S., Wojcik C., Wang T., Kar-Narayan S., Smoukov S.K. Electro-responsive surfaces with controllable wrinkling patterns for switchable light reflection–diffusion–grating devices. Mater. Today. 2020;41:51–61. doi: 10.1016/j.mattod.2020.09.028. DOI

Idriss H., Elashnikov R., Guselnikova O., Postnikov P., Kolska Z., Lyutakov O., Švorčík V. Reversible wettability switching of piezo-responsive nanostructured polymer fibers by electric field. Chem. Pap. 2021;75:191–196. doi: 10.1007/s11696-020-01290-3. DOI

Guselnikova O., Postnikov P., Elashnikov R., Svorcik V., Lyutakov O. Multiresponsive wettability switching on polymer surface: Effect of surface chemistry and/or morphology tuning. Adv. Mater. Interfaces. 2019;6:1801937. doi: 10.1002/admi.201801937. DOI

Guselnikova O., Elashnikov R., Postnikov P., Svorcik V., Lyutakov O. Smart, piezo-responsive polyvinylidenefluoride/polymethylmethacrylate surface with triggerable water/oil wettability and adhesion. ACS Appl. Mater. Interfaces. 2018;10:37461–37469. doi: 10.1021/acsami.8b06840. PubMed DOI

Svanda J., Kalachyova Y., Slepicka P., Svorcik V., Lyutakov O. Smart component for switching of plasmon resonance by external electric field. ACS Appl. Mater. Interfaces. 2016;8:225–231. doi: 10.1021/acsami.5b08334. PubMed DOI

Ilčíková M., Tkáč J., Kasák P. Switchable materials containing polyzwitterion moieties. Polymers. 2015;7:2344–2370. doi: 10.3390/polym7111518. DOI

Ivanova E.P., Hasan J., Webb H.K., Gervinskas G., Juodkazis S., Truong V.K., Wu A., Lamb R., Baulin V., Watson G., et al. Bactericidal activity of black silicon. Nat. Commun. 2013;4:2838. doi: 10.1038/ncomms3838. PubMed DOI PMC

Jenkins J., Mantell J., Neal C., Gholinia A., Verkade P., Nobbs A.H., Su B. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat. Commun. 2020;11:1626. doi: 10.1038/s41467-020-15471-x. PubMed DOI PMC

Ivanova E.P., Linklater D.P., Werner M., Baulin V.A., Xu X., Vrancken N., Rubanov S., Hanssen E., Wandiyanto J., Truong V.K., et al. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proc. Natl. Acad. Sci. USA. 2020;117:12598–12605. doi: 10.1073/pnas.1916680117. PubMed DOI PMC

Zhang X., Zhang G., Chai M., Yao X., Chen W., Chu P.K. Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO2 nanorod arrays for safe biofilm eradication on implant. Bioact. Mater. 2021;6:12–25. doi: 10.1016/j.bioactmat.2020.07.017. PubMed DOI PMC

Jiang R., Hao L., Song L., Tian L., Fan Y., Zhao J., Liu C., Ming W., Ren L. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem. Eng. J. 2020;398:125609. doi: 10.1016/j.cej.2020.125609. DOI

Caccavo D., Lamberti G., Barba A.A. Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling. Eur. J. Pharm. Biopharm. 2020;152:299–306. doi: 10.1016/j.ejpb.2020.05.020. PubMed DOI

Rajamanickam R., Kwon K., Tae G. Soft and elastic hollow microcapsules embedded silicone elastomer films with enhanced water uptake and permeability for mechanical stimuli responsive drug delivery applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;111:110789. doi: 10.1016/j.msec.2020.110789. PubMed DOI

Zhang Y., Yu J., Bomba H.N., Zhu Y., Gu Z. Mechanical force-triggered drug delivery. Chem. Rev. 2016;116:12536–12563. doi: 10.1021/acs.chemrev.6b00369. PubMed DOI

Di J., Yao S., Ye Y., Cui Z., Yu J., Ghosh T.K., Zhu Y., Gu Z. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano. 2015;9:9407–9415. doi: 10.1021/acsnano.5b03975. PubMed DOI

Lee K.Y., Peters M.C., Mooney D.J. Controlled drug delivery from polymers by mechanical signals. Adv. Mater. 2001;13:837–839. doi: 10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-D. DOI

Ballance W.C., Seo Y., Baek K., Chalifoux M., Kim D., Kong H. Stretchable, anti-bacterial hydrogel activated by large mechanical deformation. J. Control. Release. 2018;275:1–11. doi: 10.1016/j.jconrel.2018.02.009. PubMed DOI

Hyun D.C., Moon G.D., Park C.J., Kim B.S., Xia Y., Jeong U. Strain-controlled release of molecules from arrayed microcapsules supported on an elastomer substrate. Angew. Chem. Int. Ed. 2011;50:724–727. doi: 10.1002/anie.201004838. PubMed DOI

Izawa H., Kawakami K., Sumita M., Tateyama Y., Hill J.P., Ariga K. β-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: Regulation of host-guest interactions with mechanical stimuli. J. Mater. Chem. B. 2013;1:2155–2161. doi: 10.1039/c3tb00503h. PubMed DOI

Larsen M.B., Boydston A.J. Successive mechanochemical activation and small molecule release in an elastomeric material. J. Am. Chem. Soc. 2014;136:1276–1279. doi: 10.1021/ja411891x. PubMed DOI

Wang J., Colson Y.L., Grinstaff M.W. Tension-activated delivery of small molecules and proteins from superhydrophobic composites. Adv. Healthc. Mater. 2018;7:1701096. doi: 10.1002/adhm.201701096. PubMed DOI PMC

Kumar S., Sharma M., Kumar A., Powar S., Vaish R. Rapid bacterial disinfection using low frequency piezocatalysis effect. J. Ind. Eng. Chem. 2019;77:355–364. doi: 10.1016/j.jiec.2019.04.058. DOI

Feng J., Fu Y., Liu X., Tian S., Lan S., Xiong Y. Significant improvement and mechanism of ultrasonic inactivation to Escherichia coli with piezoelectric effect of hydrothermally synthesized t-BaTiO3. ACS Sustain. Chem. Eng. 2018;6:6032–6041. doi: 10.1021/acssuschemeng.7b04666. DOI

Biswas A., Saha S., Pal S., Jana N.R. TiO2-templated BaTiO3 nanorod as a piezocatalyst for generating wireless cellular stress. ACS Appl. Mater. Interfaces. 2020;12:48363–48370. doi: 10.1021/acsami.0c14965. PubMed DOI

Vatlin I.S., Chernozem R.V., Timin A.S., Chernova A.P., Plotnikov E.V., Mukhortova Y.R., Surmeneva M.A., Surmenev R.A. Bacteriostatic effect of piezoelectric poly-3-hydroxybutyrate and polyvinylidene fluoride polymer films under ultrasound treatment. Polymers. 2020;12:240. doi: 10.3390/polym12010240. PubMed DOI PMC

Luo J., Huo L., Wang L., Huang X., Li J., Guo Z., Hu M., Xue H., Gao J. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance. Chem. Eng. J. 2020;391:123537. doi: 10.1016/j.cej.2019.123537. DOI

Lee S., Kim J.Y., Cheon S., Kim S., Kim D., Ryu H. Stimuli-responsive magneto-/electro-chromatic color-tunable hydrophobic surface modified Fe3O4@SiO2 core–shell nanoparticles for reflective display approaches. RSC Adv. 2017;7:6988–6993. doi: 10.1039/C6RA27540K. DOI

Zhu L.J., Song H.M., Wang G., Zeng Z.X., Xue Q.J. Dual stimuli-responsive polysulfone membranes with interconnected networks by a vapor-liquid induced phase separation strategy. J. Colloid Interface Sci. 2018;531:585–592. doi: 10.1016/j.jcis.2018.07.098. PubMed DOI

Ghaeini-Hesaroeiye S., Boddohi S., Vasheghani-Farahani E. Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. Int. J. Biol. Macromol. 2020;143:297–304. doi: 10.1016/j.ijbiomac.2019.12.026. PubMed DOI

Elashnikov R., Radocha M., Rimpelova S., Švorčík V., Lyutakov O. Thickness and substrate dependences of phase transition, drug release and antibacterial properties of PNIPAm-co-AAc films. RSC Adv. 2015;5:86825–86831. doi: 10.1039/C5RA13972D. DOI

Zhao P., Liu H., Deng H., Xiao L., Qin C., Du Y., Shi X. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloid Surf. B-Biointerfaces. 2014;123:657–663. doi: 10.1016/j.colsurfb.2014.10.013. PubMed DOI

Ge H., Kong Y., Shou D., Deng L. Communication—Three-dimensional electro-and pH-responsive polypyrrole/alginate hybrid for dual-controlled drug delivery. J. Electrochem. Soc. 2016;163:G33. doi: 10.1149/2.0291605jes. DOI

Chandran P.R., Sandhyarani N. An electric field responsive drug delivery system based on chitosan–gold nanocomposites for site specific and controlled delivery of 5-fluorouracil. RSC Adv. 2014;4:44922–44929. doi: 10.1039/C4RA07551J. DOI

Silva-Freitas E.L., Pontes T.R., Araújo-Neto R.P., Damasceno Í.H., Silva K.L., Carvalho J.F., Medeiros A.C., Silva R.B., Silva A.K.A., Morales M.A., et al. Design of magnetic polymeric particles as a stimulus-responsive system for gastric antimicrobial therapy. AAPS PharmSciTech. 2017;18:2026–2036. doi: 10.1208/s12249-016-0673-1. PubMed DOI

Zhang Y., Pi Y., Hua Y., Xie J., Wang C., Guo K., Zhao Z., Yong Y. Bacteria responsive polyoxometalates nanocluster strategy to regulate biofilm microenvironments for enhanced synergetic antibiofilm activity and wound healing. Theranostics. 2020;10:10031. doi: 10.7150/thno.49008. PubMed DOI PMC

Li F., Zhu Y., Wang Y. Dual-responsive drug delivery system with real time tunable release behavior. Microporous Mesoporous Mater. 2014;200:46–51. doi: 10.1016/j.micromeso.2014.07.060. DOI

Akilo O.D., Kumar P., Choonara Y.E., du Toit L.C., Pradeep P., Modi G., Pillay V. In situ thermo-co-electroresponsive mucogel for controlled release of bioactive agent. Int. J. Pharm. 2019;559:255–270. doi: 10.1016/j.ijpharm.2019.01.044. PubMed DOI

Yang H., Li G., Stansbury J.W., Zhu X., Wang X., Nie J. Smart antibacterial surface made by photopolymerization. ACS Appl. Mater. Interfaces. 2016;8:28047–28054. doi: 10.1021/acsami.6b09343. PubMed DOI

Lu Y., Gao L., Wang L., Xie Z., Gao M., Zhang W. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2017;221:54–62. doi: 10.1016/j.mseb.2017.04.001. DOI

Priyanka, Kumar A. Multistimulus-responsive supramolecular hydrogels derived by in situ coating of Ag nanoparticles on 5′-CMP-capped β-FeOOH binary nanohybrids with multifunctional features and applications. ACS Omega. 2020;5:13672–13684. doi: 10.1021/acsomega.0c00815. PubMed DOI PMC

Zhang S., Yu P., Zhang Y., Ma Z., Teng K., Hu X., Lu L., Zhang Y., Zhao Y., An Q. Remarkably boosted molecular delivery triggered by combined thermal and flexoelectrical field dual stimuli. ChemistrySelect. 2020;5:6715–6722. doi: 10.1002/slct.202000423. DOI

Richardson T.P., Peters M.C., Ennett A.B., Mooney D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 2001;19:1029–1034. doi: 10.1038/nbt1101-1029. PubMed DOI

Kumar V.A., Taylor N.L., Shi S., Wickremasinghe N.C., D’Souza R.N., Hartgerink J.D. Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials. 2015;52:71–78. doi: 10.1016/j.biomaterials.2015.01.079. PubMed DOI PMC

Spiller K.L., Nassiri S., Witherel C.E., Anfang R.R., Ng J., Nakazawa K.R., Yu T., Vunjak-Novakovic G. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194–207. doi: 10.1016/j.biomaterials.2014.10.017. PubMed DOI PMC

Zhang Y., Li D., Tan J., Chang Z., Liu X., Ma W., Xu Y. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small. 2021;17:2005739. doi: 10.1002/smll.202005739. PubMed DOI

Zhao Y., Wang X., Gao F., Wang C., Yang Z., Wu H., Li C., Cheng L., Peng R. Facile preparation of Cu2Se nanosheets as dual-functional antibacterial agents. ACS Appl. Bio Mater. 2020;3:1418–1425. doi: 10.1021/acsabm.9b01084. PubMed DOI

Kaur A., Kumar R. Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Adv. 2019;9:1095–1105. doi: 10.1039/C8RA07980C. PubMed DOI PMC

Li Z., Lee D., Sheng X., Cohen R.E., Rubner M.F. Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir. 2006;22:9820–9823. doi: 10.1021/la0622166. PubMed DOI

Hu C., Zhang F., Kong Q., Lu Y., Zhang B., Wu C., Luo R., Wang Y. Synergistic chemical and photodynamic antimicrobial therapy for enhanced wound healing mediated by multifunctional light-responsive nanoparticles. Biomacromolecules. 2019;20:4581–4592. doi: 10.1021/acs.biomac.9b01401. PubMed DOI

Caires C.S., Farias L.A., Gomes L.E., Pinto B.P., Gonçalves D.A., Zagonel L.F., Nascimento V.A., Alves D.C.B., Colbeck I., Whitby C., et al. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;113:110984. doi: 10.1016/j.msec.2020.110984. PubMed DOI

Yu Y., Huang H.L., Ye X.Q., Cai D.T., Fang J.T., Sun J., Liu Y.H. Synergistic potential of antimicrobial combinations against methicillin-resistant Staphylococcus aureus. Front. Microbiol. 2020;11:1919. doi: 10.3389/fmicb.2020.01919. PubMed DOI PMC

Awad M., Yosri M., Abdel-Aziz M.M., Younis A.M., Sidkey N.M. Assessment of the antibacterial potential of biosynthesized silver nanoparticles combined with vancomycin against methicillin-resistant Staphylococcus aureus–induced infection in rats. Biol. Trace Elem. Res. 2021;199:4225–4236. doi: 10.1007/s12011-020-02561-6. PubMed DOI

Varisco M., Khanna N., Brunetto P.S., Fromm K.M. New antimicrobial and biocompatible implant coating with synergic silver–vancomycin conjugate action. ChemMedChem. 2014;9:1221–1230. doi: 10.1002/cmdc.201400072. PubMed DOI

Ho C.H., Tobis J., Sprich C., Thomann R., Tiller J.C. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv. Mater. 2004;16:957–961. doi: 10.1002/adma.200306253. DOI

Cai H., Wang P., Zhang D. pH-responsive linkages-enabled layer-by-layer assembled antibacterial and antiadhesive multilayer films with polyelectrolyte nanocapsules as biocide delivery vehicles. J. Drug Deliv. Sci. Technol. 2019;54:101251. doi: 10.1016/j.jddst.2019.101251. DOI

Cao Z., Mi L., Mendiola J., Ella-Menye J.R., Zhang L., Xue H., Jiang S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem. Int. Ed. 2012;51:2602–2605. doi: 10.1002/anie.201106466. PubMed DOI

Liu S.Q., Yang C., Huang Y., Ding X., Li Y., Fan W.M., Hedrick J.L., Yang Y.Y. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv. Mater. 2012;24:6484–6489. doi: 10.1002/adma.201202225. PubMed DOI

Lalani R., Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13:1853–1863. doi: 10.1021/bm300345e. PubMed DOI

Wei T., Zhan W., Yu Q., Chen H. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability. ACS Appl. Mater. Interfaces. 2017;9:25767–25774. doi: 10.1021/acsami.7b06483. PubMed DOI

Yu Q., Cho J., Shivapooja P., Ista L.K., Lopez G.P. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl. Mater. Interfaces. 2013;5:9295–9304. doi: 10.1021/am4022279. PubMed DOI

Zhang D., Fu Y., Huang L., Zhang Y., Ren B., Zhong M., Yang J., Zheng J. Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. J. Mater. Chem. B. 2018;6:950–960. doi: 10.1039/C7TB03018E. PubMed DOI

Liu C.Y., Huang C.J. Functionalization of polydopamine via the aza-Michael reaction for antimicrobial interfaces. Langmuir. 2016;32:5019–5028. doi: 10.1021/acs.langmuir.6b00990. PubMed DOI

Zhao C., Li X., Li L., Cheng G., Gong X., Zheng J. Dual functionality of antimicrobial and antifouling of poly (N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir. 2013;29:1517–1524. doi: 10.1021/la304511s. PubMed DOI

Xu G., Neoh K.G., Kang E.T., Teo S.L.M. Switchable antimicrobial and antifouling coatings from tannic acid-scaffolded binary polymer brushes. ACS Sustain. Chem. Eng. 2020;8:2586–2595. doi: 10.1021/acssuschemeng.9b07836. DOI

Liu Q., Liu L. Novel light-responsive hydrogels with antimicrobial and antifouling capabilities. Langmuir. 2018;35:1450–1457. doi: 10.1021/acs.langmuir.8b01663. PubMed DOI

Ding L., Li X., Hu L., Zhang Y., Jiang Y., Mao Z., Xu H., Wang B., Feng X., Sui X. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr. Polym. 2020;233:115859. doi: 10.1016/j.carbpol.2020.115859. PubMed DOI

Currie S., Shariatzadeh F.J., Singh H., Logsetty S., Liu S. Highly sensitive bacteria-responsive membranes consisting of core–shell polyurethane polyvinylpyrrolidone electrospun nanofibers for in situ detection of bacterial infections. ACS Appl. Mater. Interfaces. 2020;12:45859–45872. doi: 10.1021/acsami.0c14213. PubMed DOI

Ranjbar S., Nejad M.A.F., Parolo C., Shahrokhian S., Merkoçi A. Smart chip for visual detection of bacteria using the electrochromic properties of polyaniline. Anal. Chem. 2019;91:14960–14966. doi: 10.1021/acs.analchem.9b03407. PubMed DOI

Hakovirta M., Aksoy B., Hakovirta J. Self-assembled micro-structured sensors for food safety in paper based food packaging. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015;53:331–335. doi: 10.1016/j.msec.2015.04.020. PubMed DOI

Suaifan G.A., Al Nobani S.W., Shehadeh M.B., Darwish R.M. Engineered colorimetric detection of Staphylococcus aureus extracellular proteases. Talanta. 2019;198:30–38. doi: 10.1016/j.talanta.2019.01.067. PubMed DOI

Kaur K., Chelangat W., Druzhinin S.I., Karuri N.W., Müller M., Schönherr H. Quantitative E. coli enzyme detection in reporter hydrogel-coated paper using a smartphone camera. Biosensors. 2021;11:25. doi: 10.3390/bios11010025. PubMed DOI PMC

Alkekhia D., Safford H., Shukla S., Hopson R., Shukla A. β-Lactamase triggered visual detection of bacteria using cephalosporin functionalized biomaterials. Chem. Commun. 2020;56:11098–11101. doi: 10.1039/D0CC04088F. PubMed DOI PMC

Huang T.W., Lu H.T., Ho Y.C., Lu K.Y., Wang P., Mi F.L. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021;118:111396. doi: 10.1016/j.msec.2020.111396. PubMed DOI

Zhou J., Yao D., Qian Z., Hou S., Li L., Jenkins A.T.A., Fan Y. Bacteria-responsive intelligent wound dressing: Simultaneous In situ detection and inhibition of bacterial infection for accelerated wound healing. Biomaterials. 2018;161:11–23. doi: 10.1016/j.biomaterials.2018.01.024. PubMed DOI

Wang H., Zhou S., Guo L., Wang Y., Feng L. Intelligent Hybrid Hydrogels for Rapid in Situ Detection and Photothermal Therapy of Bacterial Infection. ACS Appl. Mater. Interfaces. 2020;12:39685–39694. doi: 10.1021/acsami.0c12355. PubMed DOI

Hibbard H.A., Reynolds M.M. Fluorescent nitric oxide donor for the detection and killing of Pseudomonas aeruginosa. J. Mater. Chem. B. 2019;7:2009–2018. doi: 10.1039/C8TB02552E. PubMed DOI

Zhou Q., Wang J., Liang Y., Yang H., Li Q., Li Q., Liao D., Liu Y., Liu H.B. Development of an intelligent photosensitive antibacterial wound dressing: Simultaneous detection and treatment of bacterial infection for accelerated wound healing. ChemNanoMat. 2020;6:516–523. doi: 10.1002/cnma.202000042. DOI

Chien H.-W., Chen X.-Y., Wen-Pei T. Poly (methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skin structure for preventing biofilm formation. Mater. Lett. 2021;285:129098. doi: 10.1016/j.matlet.2020.129098. DOI

Dundar A.F., Kolewe K.W., Homyak B., Kurtz I.S., Schiffman J.D., Watkins J.J. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces. 2018;10:20055–20063. doi: 10.1021/acsami.8b05066. PubMed DOI PMC

Zada I., Zhang W., Li Y., Sun P., Cai N., Gu J., Liu Q., Su H., Zhang D. Angle dependent antireflection property of TiO2 inspired by cicada wings. Appl. Phys. Lett. 2016;109:153701. doi: 10.1063/1.4962903. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace