Foliar Application of Low Concentrations of Titanium Dioxide and Zinc Oxide Nanoparticles to the Common Sunflower under Field Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS SP2020/74
Ministerstvo Školství, Mládeže a Tělovýchovy
1/0164/17
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0146/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0292/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0391/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0463/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0530/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
013SPU-4/2019
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
32824795
PubMed Central
PMC7466685
DOI
10.3390/nano10081619
PII: nano10081619
Knihovny.cz E-zdroje
- Klíčová slova
- foliar application, nano-fertilisers, nanoparticles, sunflower, titanium dioxide, zinc oxide,
- Publikační typ
- časopisecké články MeSH
Nano-fertilisers have only recently been introduced to intensify plant production, and there still remains inadequate scientific knowledge on their plant-related effects. This paper therefore compares the effects of two nano-fertilisers on common sunflower production under field conditions. The benefits arising from the foliar application of micronutrient-based zinc oxide fertiliser were compared with those from the titanium dioxide plant-growth enhancer. Both the zinc oxide (ZnO) and titanium dioxide (TiO2) were delivered by foliar application in nano-size at a concentration of 2.6 mg·L-1. The foliar-applied nanoparticles (NPs) had good crystallinity and a mean size distribution under 30 nm. There were significant differences between these two experimental treatments in the leaf surfaces' trichomes diversity, ratio, width, and length at the flower-bud development stage. Somewhat surprisingly, our results established that the ZnO-NPs treatment induced generally better sunflower physiological responses, while the TiO2-NPs primarily affected quantitative and nutritional parameters such as oil content and changed sunflower physiology to early maturation. There were no differences detected in titanium or zinc translocation or accumulation in the fully ripe sunflower seeds compared to the experimental controls, and our positive results therefore encourage further nano-fertiliser research.
Zobrazit více v PubMed
Jiang W., Mashayekhi H., Xing B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 2009;157:1619–1625. doi: 10.1016/j.envpol.2008.12.025. PubMed DOI
Li C., Wang P., Van Der Ent A., Cheng M., Jiang H., Read T.L., Lombi E., Tang C., De Jonge M.D., Menzies N.W., et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Ann. Bot. 2018;123:57–68. doi: 10.1093/aob/mcy135. PubMed DOI PMC
Jaberzadeh A., Moaveni P., Moghadam H.R.T., Zahedi H. Influence of Bulk and Nanoparticles Titanium Foliar Application on some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress. Not. Bot. Horti Agrobot. Cluj-Napoca. 2013;41:201–207. doi: 10.15835/nbha4119093. DOI
Kouhi S.M.M., Lahouti M., Ganjeali A., Entezari M.H. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations. Toxicol. Environ. Chem. 2014;96:861–868. doi: 10.1080/02772248.2014.994517. DOI
Pištora J., Vlček J., Lesňák M., Blažek D., Kolenčík M. Optical Methods in Diagnostics of Nanostructured Materials. 1st ed. Akademické nakladatelství CERM; Brno-Královo Pole, Czech Republic: 2015.
Vandana B., Syamala P., Venugopal D.S., Sk S.R.K.I., Venkateswarlu B., Jagannatham M., Kolenčík M., Ramakanth I., Dumpala R., Sunil B.R. Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: Studies on mechanical behaviour and corrosion resistance. Bull. Mater. Sci. 2019;42:122. doi: 10.1007/s12034-019-1799-z. DOI
Chen X., Mao S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007;107:2891–2959. doi: 10.1021/cr0500535. PubMed DOI
Holišová V., Urban M., Kolenčík M., Nemcova Y., Schröfel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI
Konvičková Z., Holišová V., Kolenčík M., Niide T., Kratošová G., Umetsu M., Seidlerová J. Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties. Colloid Polym. Sci. 2018;296:677–687. doi: 10.1007/s00396-018-4290-2. DOI
Medina C., Santos-Martinez M.J., Radomski A., I Corrigan O., Radomski M.W. Nanoparticles: Pharmacological and toxicological significance. Br. J. Pharmacol. 2009;150:552–558. doi: 10.1038/sj.bjp.0707130. PubMed DOI PMC
Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy K.R., Sreeprasad T.S., Sajanlal P.R., Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012;35:905–927. doi: 10.1080/01904167.2012.663443. DOI
Prasad R., Bhattacharyya A., Nguyen Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017;8:1014. doi: 10.3389/fmicb.2017.01014. PubMed DOI PMC
Kolenčík M., Nemček L., Šebesta M., Urík M., Ernst D., Kratošová G., Konvičková Z. Effect of TiO2 as plant-growth stimulating nanomaterial on crop production. In: Singh V.P., Singh S., Prasad S.M., Chauhan D.K., Tripathi D.K., editors. Plant Responses to Nanomaterials, Recent Interventions, and Physiological and Biochemical Responses. 1st ed. Springer Nature Switzerland AG; Cham, Switzerland: 2020. p. 302. in press.
Gkanatsiou C., Ntalli N., Menkissoglu-Spiroudi U., Dendrinou-Samara C. Essential Metal-Based Nanoparticles (Copper/Iron NPs) as Potent Nematicidal Agents against Meloidogyne spp. J. Nanotechnol. Res. 2019;1:043–057. doi: 10.26502/jnr.2688-8521004. DOI
Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total. Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Estrada-Urbina J., Cruz-Alonso A., Santander-González M., Méndez-Albores A., Vázquez-Durán A. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize. Nanomaterials. 2018;8:247. doi: 10.3390/nano8040247. PubMed DOI PMC
Wagner G., Korenkov V., Judy J.D., Bertsch P.M. Nanoparticles Composed of Zn and ZnO Inhibit Peronospora tabacina Spore Germination in vitro and P. tabacina Infectivity on Tobacco Leaves. Nanomaterials. 2016;6:50. doi: 10.3390/nano6030050. PubMed DOI PMC
Feidantsis K., Kalogiannis S., Marinoni A., Vasilogianni A.-M., Gkanatsiou C., Kastrinaki G., Dendrinou-Samara C., Kaloyianni M. Toxicity assessment and comparison of the land snail’s Cornu aspersum responses against CuO nanoparticles and ZnO nanoparticles. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2020;236:108817. doi: 10.1016/j.cbpc.2020.108817. PubMed DOI
Raliya R., Nair R., Chavalmane S., Wang W.-N., Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7:1584–1594. doi: 10.1039/C5MT00168D. PubMed DOI
Kaya Y. Sunflower. In: Gupta S.K., editor. Breeding Oilseed Crops for Sustainable Production. Academic Press; San Diego, CA, USA: 2016. pp. 55–88.
Kirkham M.B. Principles of Soil and Plant Water Relations. 2nd ed. Academic Press; Boston, MA, USA: 2014. Leaf Anatomy and Leaf Elasticity; pp. 409–430.
LaRue C., Castillo-Michel H., Sobanska S., Trcera N., Sorieul S., Cécillon L., Ouerdane L., Legros S., Sarret G. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 2014;273:17–26. doi: 10.1016/j.jhazmat.2014.03.014. PubMed DOI
LaRue C., Veronesi G., Flank A.-M., Surblé S., Herlin N., Carrière M. Comparative Uptake and Impact of TiO2 Nanoparticles in Wheat and Rapeseed. J. Toxicol. Environ. Health Part A. 2012;75:722–734. doi: 10.1080/15287394.2012.689800. PubMed DOI
Torabian S., Zahedi M., Khoshgoftar A.H. Effects of Foliar Spray of Two Kinds of Zinc Oxide on the Growth and Ion Concentration of Sunflower Cultivars under Salt Stress. J. Plant Nutr. 2015;39:172–180. doi: 10.1080/01904167.2015.1009107. DOI
Kötschau A., Büchel G., Einax J., Fischer C., Von Tümpling W., Merten D. Mapping of macro and micro elements in the leaves of sunflower (Helianthus annuus) by Laser Ablation–ICP–MS. Microchem. J. 2013;110:783–789. doi: 10.1016/j.microc.2012.12.011. DOI
Pal D. Sunflower (Helianthus annuus L.) seeds in health and nutrition. In: Preedy V.R., Watson R.R., Patel V.B., editors. Nuts and Seeds in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2011. pp. 1097–1105.
Muhlbauer W., Muller J. Drying Atlas: Drying Kinetics and Quality of Agricultural Products. Woodhead Publishing; Cambridge, UK: 2020.
Adesodun J.K., Atayese M.O., Agbaje T.A., Osadiaye B.A., Mafe O.F., Soretire A.A. Phytoremediation Potentials of Sunflowers (Tithonia diversifolia and Helianthus annuus) for Metals in Soils Contaminated with Zinc and Lead Nitrates. Water Air Soil Pollut. 2009;207:195–201. doi: 10.1007/s11270-009-0128-3. DOI
Maj G., Krzaczek P., Stamirowska-Krzaczek E., Lipińska H., Kornas R. Assessment of energy and physicochemical biomass properties of selected forecrop plant species. Renew. Energy. 2019;143:520–529. doi: 10.1016/j.renene.2019.04.166. DOI
Osman N.S., Sapawe N., Sapuan M.A., Fozi M.F.M., Azman M.H.I.F., Fazry A.H.Z., Zainudin M.Z.H., Hanafi M.F. Sunflower shell waste as an alternative animal feed. Mater. Today Proc. 2018;5:21905–21910. doi: 10.1016/j.matpr.2018.07.049. DOI
Brazil O.A.V., Vilanova-Neta J.L., Silva N.O., Vieira I.M.M., Lima Á.S., Ruzene D.S., Da Silva D.P., Figueiredo R.T. Integral use of lignocellulosic residues from different sunflower accessions: Analysis of the production potential for biofuels. J. Clean. Prod. 2019;221:430–438. doi: 10.1016/j.jclepro.2019.02.274. DOI
Shahhoseini R., Azizi M., Asili J., Moshtaghi N., Samiei L. Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of Feverfew (Tanacetum parthenium (L.) Schultz Bip.) Acta Physiol. Plant. 2020;42:1–18. doi: 10.1007/s11738-020-03043-x. DOI
Hussain A., Ali S., Rizwan M., Rehman M.Z.U., Javed M.R., Imran M., Chatha S.A.S., Nazir R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 2018;242:1518–1526. doi: 10.1016/j.envpol.2018.08.036. PubMed DOI
Velasco E.A.P., Galindo R.B., Valdez-Aguilar L.A., González-Fuentes J.A., Urbina B.A.P., Lozano-Morales S.A., Sanchez-Valdes S. Effects of the Morphology, Surface Modification and Application Methods of ZnO-NPs on the Growth and Biomass of Tomato Plants. Molecules. 2020;25:1282. doi: 10.3390/molecules25061282. PubMed DOI PMC
Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI
Sabir S., Arshad M., Chaudhari S.K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Sci. World J. 2014;2014:1–8. doi: 10.1155/2014/925494. PubMed DOI PMC
Kołodziejczak-Radzimska A., Jesionowski T. Zinc Oxide—From Synthesis to Application: A Review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833. PubMed DOI PMC
Rehman S., Ullah R., Butt A., Gohar N. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009;170:560–569. doi: 10.1016/j.jhazmat.2009.05.064. PubMed DOI
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC
Lyu S., Wei X., Chen J., Wang C., Wang X., Pan D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017;8:597. doi: 10.3389/fpls.2017.00597. PubMed DOI PMC
Khater M.S. Effect of titanium nanoparticles (TiO2) on growth, yield and chemical constituents of coriander plants. Arab. J. Nucl. Sci. Appl. 2015;48:187–194.
Hong F., Zhou J., Liu C., Yang F., Wu C., Zheng L., Yang P. Effect of Nano-TiO2 on Photochemical Reaction of Chloroplasts of Spinach. Biol. Trace Element Res. 2005;105:269–280. doi: 10.1385/BTER:105:1-3:269. PubMed DOI
Hong F., Yang F., Liu C., Gao Q., Wan Z., Gu F., Wu C., Ma Z., Zhou J., Yang P. Influences of Nano-TiO2 on the Chloroplast Aging of Spinach Under Light. Biol. Trace Element Res. 2005;104:249–260. doi: 10.1385/BTER:104:3:249. PubMed DOI
Lei Z., Mingyu S., Chao L., Liang C., Hao H., Xiao W., Xiaoqing L., Fan Y., Fengqing G., Fashui H. Effects of Nanoanatase TiO2 on Photosynthesis of Spinach Chloroplasts Under Different Light Illumination. Biol. Trace Element Res. 2007;119:68–76. doi: 10.1007/s12011-007-0047-3. PubMed DOI
Wang Y., Sun C., Zhao X., Cui B., Zeng Z., Wang A., Liu G., Cui H. The Application of Nano-TiO2 Photo Semiconductors in Agriculture. Nanoscale Res. Lett. 2016;11:529. doi: 10.1186/s11671-016-1721-1. PubMed DOI PMC
Weng W., Ma M., Du P., Zhao G., Shen G., Wang J., Han G. Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition. Surf. Coatings Technol. 2005;198:340–344. doi: 10.1016/j.surfcoat.2004.10.071. DOI
Cox A., Venkatachalam P., Sahi S., Sharma N.C. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. 2016;107:147–163. doi: 10.1016/j.plaphy.2016.05.022. PubMed DOI
Moaveni P., Talebi A., Farahani A., Maroufi K. In Study of nano particles TiO2 spraying on some yield components in barley (Hordem vulgare L.); Proceedings of the International Conference on Environmental and Agriculture Engineering; Chengdu, Sichuan, China. 29–31 July 2011; Singapore: IACSIT Press; 2011. pp. 115–119.
Kořenková L., Šebesta M., Urík M., Kolenčík M., Kratošová G., Bujdoš M., Vávra I., Dobročka E. Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agric. Scand. Sect. B Plant Soil Sci. 2017;67:1–7. doi: 10.1080/09064710.2016.1267255. DOI
Singh J., Kumar S., Alok A., Upadhyay S.K., Rawat M., Tsang D.C.W., Bolan N., Song H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 2019;214:1061–1070. doi: 10.1016/j.jclepro.2019.01.018. DOI
Skala O. Complex Technology for Oil Crops Cultivation. Česká Zemědělská Univerzita; Praha, Czech Republic: 2016.
Harčár J., Priechodská Z., Karolus K., Karolusová E., Remšík K., Šucha P. Vysvetlivky ku Geologickej Mape Severovýchodnej Časti Podunajskej Nižiny. Geologický ústav Diolíza Štúra; Bratislava, Slovakia: 1988.
Šimanský V., Kováčik P. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem. 2015;20:1033–1040. doi: 10.5601/jelem.2015.20.1.857. DOI
Banerjee A.V., Duflo E.M. Handbook of Field Experiments. Vol. 1. Elsevier; Amsterdam, The Netherlands: 2017. pp. 1–24.
Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., et al. The Uniform Methods of Soil Analysis. VÚPOP Bratislava; Ružinov, Slovakia: 2011. p. 136.
Wierzbowska J., Kovačik P., Sienkiewicz S., Krzebietke S., Bowszys T. Determination of heavy metals and their availability to plants in soil fertilized with different waste substances. Environ. Monit. Assess. 2018;190:567. doi: 10.1007/s10661-018-6941-7. PubMed DOI PMC
Kováčik P., Macák M., Ducsay L., Halčínová M., Jančich M. Effect of ash-fly ash mixture application on soil fertility. J. Elem. 2011;16:215–225. doi: 10.5601/jelem.2011.16.2.05. DOI
Šimanský V., Jonczak J., Kováčik P., Bajčan D. Impact of crop residues and biopreparations on nitrogen changes in Haplic Luvisol—Model experiment. Soil Sci. Annu. 2018;69:251–258. doi: 10.2478/ssa-2018-0026. DOI
Alberio C., Izquierdo N., Aguirrezábal L. Sunflower Crop Physiology and Agronomy. In: Martínez-Force E., Dunford N.T., Salas J.J., editors. Sunflower. AOCS Press; Champaign, IL, USA: 2015. pp. 53–91.
Koutroubas S.D., Vassiliou G., Damalas C.A. Sunflower morphology and yield as affected by foliar applications of plant growth regulators. Int. J. Plant Prod. 2014;8:215–230.
Ernst D., Kovar M., Černý I. Effect of two different plant growth regulators on production traits of sunflower. J. Central Eur. Agric. 2016;17:998–1012. doi: 10.5513/JCEA01/17.4.1804. DOI
Meier U. Growth Stages of Mono-And Dicotyledonous Plants. Blackwell Wissenschafts-Verlag; Kurfürstendamm, Berlin, Germany: 1997.
Aschenbrenner A.-K., Horakh S., Spring O. Linear glandular trichomes of Helianthus (Asteraceae): Morphology, localization, metabolite activity and occurrence. AoB PLANTS. 2013;5:plt028. doi: 10.1093/aobpla/plt028. DOI
StatSoft Inc. STATISTICA (Data Analysis Software System), Version 10. [(accessed on 20 May 2020)]; Available online: www.statsoft.com.
Shahidi F. Current Protocols in Food Analytical Chemistry. Volume 7. John Wiley & Sons, Inc.; New Jersey, NJ, USA: 2003. Extraction and measurement of total lipids; pp. D1.1.1–D1.1.11.
Gamon J.A., Penuelas J., Field C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 1992;41:35–44. doi: 10.1016/0034-4257(92)90059-S. DOI
Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978. doi: 10.1071/FP09123. PubMed DOI
Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar D.S. Nanoparticulate material delivery to plants. Encycl. Appl. Plant Sci. 2010;179:154–163. doi: 10.1016/j.plantsci.2010.04.012. DOI
Wang W.-N., Tarafdar J.C., Biswas P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanoparticle Res. 2013;15:1. doi: 10.1007/s11051-013-1417-8. DOI
Eichert T., Kurtz A., Steiner U., Goldbach H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008;134:151–160. doi: 10.1111/j.1399-3054.2008.01135.x. PubMed DOI
Ditta A., Arshad M. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol. Rev. 2016;5:209. doi: 10.1515/ntrev-2015-0060. DOI
Monreal C.M., DeRosa M., Mallubhotla S.C., Bindraban P.S., Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils. 2015;52:423–437. doi: 10.1007/s00374-015-1073-5. DOI
Priyanka N., Geetha N., Ghorbanpour M., Venkatachalam P. Chapter 6—Role of Engineered Zinc and Copper Oxide Nanoparticles in Promoting Plant Growth and Yield: Present Status and Future Prospects. In: Ghorbanpour M., Wani S.H., editors. Advances in Phytonanotechnology. Academic Press; Cambridge, MA, USA: 2019. pp. 183–201.
Chaudhuri S.K., Malodia L. Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 2017;7:501–512. doi: 10.1007/s13204-017-0586-7. DOI
Tarafdar J.C., Raliya R., Mahawar H., Rathore I. Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetum americanum) Agric. Res. 2014;3:257–262. doi: 10.1007/s40003-014-0113-y. DOI
Jabeen N., Maqbool Q., Bibi T., Nazar M., Hussain S.Z., Hussain T., Jan T., Ishaq A., Maaza M., Anwaar S. Optimised synthesis of ZnO-nano-fertiliser through green chemistry: Boosted growth dynamics of economically important L. esculentum. IET Nanobiotechnology. 2018;12:405–411. doi: 10.1049/iet-nbt.2017.0094. PubMed DOI PMC
Lu C., Zhang C., Wen J., Wu G., Tao M. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 2002;21:168–171.
Gao F., Hong F., Liu C., Zheng L., Su M., Wu X., Yang F., Wu C., Yang P. Mechanism of Nano-anatase TiO2 on Promoting Photosynthetic Carbon Reaction of Spinach: Inducing Complex of Rubisco-Rubisco Activase. Biol. Trace Element Res. 2006;111:239–254. doi: 10.1385/BTER:111:1:239. PubMed DOI
Drissi S., Houssa A.A., Bamouh A., Benbella M. Corn Silage (Zea mays L.) Response to Zinc Foliar Spray Concentration When Grown on Sandy Soil. J. Agric. Sci. 2015;7:68. doi: 10.5539/jas.v7n2p68. DOI
USDA . Standards for Sunflower Seeds, U.S. Standards for Grain Subpart K. USDA; Washington, DC, USA: 1996.
FAO (Food and Agriculture Organization of the United Nations) Sunflower. [(accessed on 25 May 2020)]; Available online: http://www.fao.org/land-water/databases-and-software/crop-information/sunflower/en/
Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2014;31:1–17. doi: 10.1080/01448765.2014.964649. DOI
Kalia A., Sharma S.P., Kaur H., Kaur H. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier; Amsterdam, The Netherlands: 2020. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges; pp. 99–134.
Ali F., Bano A., Fazal A. Recent methods of drought stress tolerance in plants. Plant Growth Regul. 2017;82:363–375. doi: 10.1007/s10725-017-0267-2. DOI
Kuang T. Mechanism and Regulation of Primary Energy Conversion Process in Photosynthesis. Science and Technology Press; Nanjing, Jiangsu, China: 2003. pp. 22–68.
Tucker C.M., Cadotte M.W., Carvalho S.B., Davies T.J., Ferrier S., Fritz S.A., Grenyer R., Helmus M.R., Jin L.S., Mooers A.O., et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2016;92:698–715. doi: 10.1111/brv.12252. PubMed DOI PMC
Ali A.M., Darvishzadeh R., Skidmore A.K., Van Duren I. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices. Agric. For. Meteorol. 2017;236:162–174. doi: 10.1016/j.agrformet.2017.01.015. DOI
Gamon J.A., Serrano L., Surfus J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia. 1997;112:492–501. doi: 10.1007/s004420050337. PubMed DOI
Hafeez B., Khanif Y.M., Saleem M. Role of Zinc in Plant Nutrition—A Review. Am. J. Exp. Agric. 2013;3:374–391. doi: 10.9734/AJEA/2013/2746. DOI
Kabata-Pendias A. Trace Elements in Soils and Plants. CRC Press, Inc.; Boca Raton, FL, USA: 2010.
Mirzapour M.H., Khoshgoftar A.H. Zinc Application Effects on Yield and Seed Oil Content of Sunflower Grown on a Saline Calcareous Soil. J. Plant Nutr. 2006;29:1719–1727. doi: 10.1080/01904160600897430. DOI
Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Rehman M.Z.U., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2018;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI
Rizwan M., Ali S., Rehman M.Z.U., Adrees M., Arshad M., Qayyum M.F., Ali L., Hussain A., Chatha S.A.S., Imran M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 2019;248:358–367. doi: 10.1016/j.envpol.2019.02.031. PubMed DOI
Bellesi F.J., Arata A.F., Martínez M., Arrigoni A.C., Stenglein S.A., Dinolfo M.I. Degradation of gluten proteins by Fusarium species and their impact on the grain quality of bread wheat. J. Stored Prod. Res. 2019;83:1–8. doi: 10.1016/j.jspr.2019.05.007. DOI
Kirnak H., Irik H., Unlukara A. Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Sci. Hortic. 2019;256:108608. doi: 10.1016/j.scienta.2019.108608. DOI
Candogan B.N., Sincik M., Buyukcangaz H., Demirtas C., Goksoy A.T., Yazgan S. Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agric. Water Manag. 2013;118:113–121. doi: 10.1016/j.agwat.2012.11.021. DOI
Ahmad B., Shabbir A., Jaleel H., Khan M.M.A., Sadiq Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol. 2018;13:6–15. doi: 10.1016/j.cpb.2018.04.002. DOI
Shabbir A., Khan M., Ahmad B., Sadiq Y., Jaleel H., Uddin M. Efficacy of TiO2 nanoparticles in enhancing the photosynthesis, essential oil and khusimol biosynthesis in Vetiveria zizanioides L. Nash. Photosynthetica. 2019;57:599–606. doi: 10.32615/ps.2019.071. DOI
Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis