Validation of Lipophosphonoxin-loaded Polycaprolactone Nanofiber Dressing for Full-thickness Wounds in a Porcine Model

. 2025 May-Jun ; 39 (3) : 1331-1340.

Jazyk angličtina Země Řecko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40294986

BACKGROUND/AIM: This study investigated the therapeutic potential of lipophosphonoxin (LPPO), an antibacterial agent, loaded into polycaprolactone nanofiber dressings (NANO-LPPO) for full-thickness wound healing. Using a porcine model, we aimed to assess the impact of areal weight of the dressing (10, 20 and 30 g/m2) on wound-healing outcomes and validate findings from previous murine studies. MATERIALS AND METHODS: Full-thickness wounds were created on porcine skin and treated with the NANO-LPPO dressings of differing thickness. Positive control (Aquacel Ag+) and standard control (Jelonet) groups were included for comparison. Wound-healing progression was evaluated macroscopically and on the histological level. RESULTS: Macroscopic observations indicated no signs of infection in any group, with wounds covered by scabs by day 14. Thicker dressings (areal weights of 30 and 20 g/m2) demonstrated superior performance in promoting the formation of granulation tissue and healing compared to the thinner version (areal weight of 10 g/m2). LPPO-loading enhanced scaffold wettability and biodegradability without impairing healing outcomes. Both control groups exhibited similar healing characteristics. CONCLUSION: The findings underscore the importance of optimizing dressing thickness for effective wound healing. NANO-LPPO dressings exhibit translational potential as a therapeutic option for full-thickness wounds, warranting further preclinical and regulatory evaluation to support clinical application.

Zobrazit více v PubMed

Ashoobi MT, Asgary MR, Sarafi M, Fathalipour N, Pirooz A, Jafaryparvar Z, Rafiei E, Farzin M, Samidoust P, Delshad MSE. Incidence rate and risk factors of surgical wound infection in general surgery patients: A cross-sectional study. Int Wound J. 2023;20(7):2640–2648. doi: 10.1111/iwj.14137. PubMed DOI PMC

Su L, Jia Y, Fu L, Guo K, Xie S. The emerging progress on wound dressings and their application in clinic wound management. Heliyon. 2023;9(12):e22520. doi: 10.1016/j.heliyon.2023.e22520. PubMed DOI PMC

Mikeš P, Brož A, Sinica A, Asatiani N, Bačáková L. In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomed Mater. 2020;15(6):065023. doi: 10.1088/1748-605X/ab950f. PubMed DOI

Do Pham DD, Jenčová V, Kaňuchová M, Bayram J, Grossová I, Šuca H, Urban L, Havlíčková K, Novotný V, Mikeš P, Mojr V, Asatiani N, Košťáková EK, Maixnerová M, Vlková A, Vítovská D, Šanderová H, Nemec A, Krásný L, Zajíček R, Lukáš D, Rejman D, Gál P. Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci Rep. 2021;11(1):17688. doi: 10.1038/s41598-021-96980-7. PubMed DOI PMC

Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA. Murine model of wound healing. J Vis Exp. 2013;(75):e50265. doi: 10.3791/50265. PubMed DOI PMC

Tuca AC, Bernardelli de Mattos I, Funk M, Markovic D, Winter R, Lemarchand T, Kniepeiss D, Spendel S, Hartmann B, Ottoman C, Kamolz LP. A standardized porcine model for partial-thickness wound healing studies: design, characterization, model validation, and histological insights. Int J Mol Sci. 2024;25(14):7658. doi: 10.3390/ijms25147658. PubMed DOI PMC

Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127–138. doi: 10.1093/ilar/ilv016. PubMed DOI

Grada A, Mervis J, Falanga V. Research techniques made simple: animal modelsofwound healing. J Invest Dermatol. 2018;138(10):2095–2105.e1. doi: 10.1016/j.jid.2018.08.005. PubMed DOI

Kitano H, Ishikawa T, Masaoka Y, Komiyama K, Takahashi M, Hidai C. The EGF motif with CXDXXXXYXCXC sequence suppresses fibrosis in a mouse skin wound model. In Vivo. 2023;37(4):1486–1497. doi: 10.21873/invivo.13233. PubMed DOI PMC

Jensen LK, Henriksen NL, Jensen HE. Guidelines for porcine models of human bacterial infections. Lab Anim. 2019;53(2):125–136. doi: 10.1177/0023677218789444. PubMed DOI

Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, Šanderová H, Vítovská D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlák D, Bartůněk P, Krásný L, Rejman D. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J Med Chem. 2017;60(14):6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Miguel SP, Sequeira RS, Moreira AF, Cabral CS, Mendonça AG, Ferreira P, Correia IJ. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm. 2019;139:1–22. doi: 10.1016/j.ejpb.2019.03.010. PubMed DOI

Zhang Q, Li Y, Lin ZYW, Wong KKY, Lin M, Yildirimer L, Zhao X. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discovery Today. 2017;22(9):1351–1366. doi: 10.1016/j.drudis.2017.05.007. PubMed DOI

Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868–892. doi: 10.1016/j.progpolymsci.2010.03.003. PubMed DOI PMC

Daristotle JL, Lau LW, Erdi M, Hunter J, Djoum A Jr, Srinivasan P, Wu X, Basu M, Ayyub OB, Sandler AD, Kofinas P. Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng Transl Med. 2019;5(1):e10149. doi: 10.1002/btm2.10149. PubMed DOI PMC

Chandika P, Oh GW, Heo SY, Kim SC, Kim TH, Kim MS, Jung WK. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooli gosaccharides for full-thickness wound-healing applications. Mater Sci Eng C Mater Biol Appl. 2021;121:111871. doi: 10.1016/j.msec.2021.111871. PubMed DOI

Wang Y, Zhang CL, Zhang Q, Li P. Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int J Nanomedicine. 2011;6:667–676. doi: 10.2147/IJN.S17547. PubMed DOI PMC

Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, Kamali A, Rahaie M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater. 2020;113:144–163. doi: 10.1016/j.actbio.2020.06.031. PubMed DOI

LE LTT, Giang NN, Chien PN, Trinh XT, Long NV, VAN Anh LT, Nga PT, Zhang XR, Nam SY, Heo CY. Enhancement of wound healing efficacy by chitosan-based hydrocolloid on Sprague Dawley rats. In Vivo. 2023;37(3):1052–1064. doi: 10.21873/invivo.13180. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...