In vitro activity of antibiotics potentially effective against difficult-to-treat strains of Gram-negative rods: retrospective study

. 2024 Apr 09 ; 14 (1) : 8310. [epub] 20240409

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38594467

Grantová podpora
MH CZ-DRO-VFN00064165 Ministerstvo Zdravotnictví Ceské Republiky
MH CZ-DRO-VFN00064165 Ministerstvo Zdravotnictví Ceské Republiky
MH CZ-DRO-VFN00064165 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 38594467
PubMed Central PMC11004177
DOI 10.1038/s41598-024-59036-0
PII: 10.1038/s41598-024-59036-0
Knihovny.cz E-zdroje

Bacterial resistance surveillance is one of the main outputs of microbiological laboratories and its results are important part of antimicrobial stewardship (AMS). In this study, the susceptibility of specific bacteria to selected antimicrobial agents was tested. The susceptibility of 90 unique isolates of pathogens of critical priority obtained from clinically valid samples of ICU patients in 2017-2021 was tested. 50% of these fulfilled difficult-to-treat resistance (DTR) criteria and 50% were susceptible to all antibiotics included in the definition. 10 Enterobacterales strains met DTR criteria, and 2 (20%) were resistant to colistin (COL), 2 (20%) to cefiderocol (FCR), 7 (70%) to imipenem/cilastatin/relebactam (I/R), 3 (30%) to ceftazidime/avibactam (CAT) and 5 (50%) to fosfomycin (FOS). For Enterobacterales we also tested aztreonam/avibactam (AZA) for which there are no breakpoints yet. The highest MIC of AZA observed was 1 mg/l, MIC range in the susceptible cohort was 0.032-0.064 mg/l and in the DTR cohort (incl. class B beta-lactamase producers) it was 0.064-1 mg/l. Two (13.3%) isolates of Pseudomonas aeruginosa (15 DTR strains) were resistant to COL, 1 (6.7%) to FCR, 13 (86.7%) to I/R, 5 (33.3%) to CAT, and 5 (33.3%) to ceftolozane/tazobactam. All isolates of Acinetobacter baumannii with DTR were susceptible to COL and FCR, and at the same time resistant to I/R and ampicillin/sulbactam. New antimicrobial agents are not 100% effective against DTR. Therefore, it is necessary to perform susceptibility testing of these antibiotics, use the data for surveillance (including local surveillance) and conform to AMS standards.

Zobrazit více v PubMed

Rosenblatt-Farrell N. The landscape of antibiotic resistance. Environ. Health Perspect. 2009;117(6):A244–A250. doi: 10.1289/ehp.117-a244. PubMed DOI PMC

WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022–2020 data. Copenhagen: WHO Regional Office for Europe; 2022.

Review on Antimicrobial Resistance. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. 2014. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf [Accessed 7.3.2023].

Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI

Vardakas KZ, Rafailidis PI, Konstantelias AA, Falagas ME. Predictors of mortality in patients with infections due to multi-drug resistant Gram negative bacteria: the study, the patient, the bug or the drug? J. Infect. 2013;66(5):401–414. doi: 10.1016/j.jinf.2012.10.028. PubMed DOI

Kadri SS, Adjemian J, Lai YL, et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018;67(12):1803–1814. doi: 10.1093/cid/ciy378. PubMed DOI PMC

Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev. 2010;23(1):160–201. doi: 10.1128/CMR.00037-09. PubMed DOI PMC

Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010;54(3):969–976. doi: 10.1128/AAC.01009-09. PubMed DOI PMC

Cisneros JM, Rosso-Fernández CM, Roca-Oporto C, et al. Colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia (Magic Bullet study): An investigator-driven, open-label, randomized, noninferiority controlled trial. Crit. Care. 2019;23(1):383. doi: 10.1186/s13054-019-2627-y. PubMed DOI PMC

Kroneislova G, Zavora J, Adamkova V. Are new antibiotics efficient against DTR (difficult-to-treat resistance) isolates? Prevalence and susceptibility of invasive DTR strains. Crit. Care. 2023;27(Suppl 1):150. doi: 10.1186/s13054-023-04377-x. PubMed DOI

The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. 2023., Version 13.0. http://www.eucast.org. [Accessed 7. 3. 2023].

Huh K, Chung DR, Ha YE, et al. Impact of difficult-to-treat resistance in gram-negative bacteremia on mortality: Retrospective analysis of nationwide surveillance data. Clin Infect Dis. 2020;71(9):e487–e496. doi: 10.1093/cid/ciaa084. PubMed DOI

Vincent JL, Sakr Y, Singer M, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478–1487. doi: 10.1001/jama.2020.2717. PubMed DOI PMC

Niederman MS, Baron RM, Bouadma L, et al. Initial antimicrobial management of sepsis. Crit. Care. 2021;25(1):307. doi: 10.1186/s13054-021-03736-w. PubMed DOI PMC

Falcone M, Bassetti M, Tiseo G, et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit. Care. 2020;24(1):29. doi: 10.1186/s13054-020-2742-9. PubMed DOI PMC

Kanj SS, Bassetti M, Kiratisin P, et al. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents. 2022;60(3):106633. doi: 10.1016/j.ijantimicag.2022.106633. PubMed DOI

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 33rd edition. www.clsi.org [Accessed 7. 3. 2023].

Matuschek E, Åhman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin: Evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018;24(8):865–870. doi: 10.1016/j.cmi.2017.11.020. PubMed DOI

Adámková V, Mareković I, Szabó J, et al. Antimicrobial activity of ceftazidime-avibactam and comparators against Pseudomonas aeruginosa and Enterobacterales collected in Croatia, Czech Republic, Hungary, Poland, Latvia and Lithuania: ATLAS Surveillance Program, 2019. Eur. J. Clin. Microbiol. Infect. Dis. 2022;41(6):989–996. doi: 10.1007/s10096-022-04452-1. PubMed DOI PMC

Pruss A, Kwiatkowski P, Masiuk H, et al. Analysis of the prevalence of colistin resistance among clinical strains of Klebsiella pneumoniae. Ann. Agric. Environ. Med. 2022;29(4):518–522. doi: 10.26444/aaem/155253. PubMed DOI

Smith EC, Brigman HV, Anderson JC, et al. Performance of four fosfomycin susceptibility testing methods against an international collection of clinical Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 2020;58(10):e01121. doi: 10.1128/JCM.01121-20. PubMed DOI PMC

Behera B, Mohanty S, Sahu S, Praharaj AK. In vitro activity of fosfomycin against multidrug-resistant urinary and nonurinary gram-negative isolates. Indian J. Crit. Care Med. 2018;22(7):533–536. doi: 10.4103/ijccm.IJCCM_67_18. PubMed DOI PMC

van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime–avibactam in the treatment of infections due to carbapenem–resistant enterobacteriaceae. Clin. Infect. Dis. 2018;66(2):163–171. doi: 10.1093/cid/cix783. PubMed DOI PMC

Bassetti M, Vena A, Sepulcri C, Giacobbe DR, Peghin M. Treatment of bloodstream infections due to gram-negative bacteria with difficult-to-treat resistance. Antibiotics. 2020;9(9):632. doi: 10.3390/antibiotics9090632. PubMed DOI PMC

Karlowsky JA, Lob SH, DeRyke CA, et al. In vitro activity of ceftolozane–tazobactam, imipenem–relebactam, ceftazidime–avibactam, and comparators against Pseudomonas aeruginosa isolates collected in United States hospitals according to results from the SMART surveillance program, 2018 to 2020. Antimicrob. Agents Chemother. 2022;66(5):e0018922. doi: 10.1128/aac.00189-22. PubMed DOI PMC

Alatoom A, Elsayed H, Lawlor K, et al. Comparison of antimicrobial activity between ceftolozane–tazobactam and ceftazidime–avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int. J. Infect. Dis. 2017;62:39–43. doi: 10.1016/j.ijid.2017.06.007. PubMed DOI

Lob SH, DePestel DD, DeRyke CA, et al. Ceftolozane/tazobactam and imipenem/relebactam cross-susceptibility among clinical isolates of Pseudomonas aeruginosa from patients with respiratory tract infections in ICU and Non-ICU wards-SMART United States 2017–2019. Open Forum Infect. Dis. 2021;8(7):ofab320. doi: 10.1093/ofid/ofab320. PubMed DOI PMC

Hernández-García M, García-Castillo M, Melo-Cristino J, et al. In vitro activity of imipenem/relebactam against Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal (SUPERIOR and STEP studies) J. Antimicrob. Chemother. 2022;77(11):3163–3172. doi: 10.1093/jac/dkac298. PubMed DOI

Yu W, Xiong L, Luo Q, et al. In vitro activity comparison of ceftazidime–avibactam and aztreonam–avibactam against bloodstream infections with carbapenem-resistant organisms in China. Front. Cell Infect. Microbiol. 2021;11:780365. doi: 10.3389/fcimb.2021.780365. PubMed DOI PMC

Rossolini GM, Stone G, Kantecki M, Arhin FF. In vitro activity of aztreonam/avibactam against isolates of Enterobacterales collected globally from ATLAS in 2019. J. Glob. Antimicrob. Resist. 2022;30:214–221. doi: 10.1016/j.jgar.2022.06.018. PubMed DOI

Hoellinger B, Simand C, Jeannot K, et al. Real-world clinical outcome of cefiderocol for treatment of multidrug-resistant non-fermenting, gram negative bacilli infections: a case series. Clin. Microbiol. Infect. 2023;29(3):393–395. doi: 10.1016/j.cmi.2022.11.005. PubMed DOI

Candel FJ, Santerre Henriksen A, Longshaw C, Yamano Y, Oliver A. In vitro activity of the novel siderophore cephalosporin, cefiderocol, in Gram-negative pathogens in Europe by site of infection. Clin. Microbiol. Infect. 2022;28(3):e1–e6. doi: 10.1016/j.cmi.2021.07.018. PubMed DOI

Pascale R, Pasquini Z, Bartoletti M, et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: a multicentre cohort study. JAC Antimicrob. Resist. 2021;3(4):dlab174. doi: 10.1093/jacamr/dlab174. PubMed DOI PMC

Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine) Clin. Microbiol. Infect. 2022;28(4):521–547. doi: 10.1016/j.cmi.2021.11.025. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...