Aesculus hippocastanum L. Extract Does Not Induce Fibroblast to Myofibroblast Conversion but Increases Extracellular Matrix Production In Vitro Leading to Increased Wound Tensile Strength in Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA No. 1/0561/18 and VEGA 1/0319/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-16-0446
Agentúra na Podporu Výskumu a Vývoja
No. CZ.1.05/1.1.00/02.0109
European Regional Development Fund
ITMS2014 and 313011D103
European Regional Development Fund
PROGRES Q37 and Q28
Univerzita Karlova v Praze
PubMed
32331226
PubMed Central
PMC7221972
DOI
10.3390/molecules25081917
PII: molecules25081917
Knihovny.cz E-zdroje
- Klíčová slova
- horse chestnut, phytotherapy, repair and regeneration, wound healing,
- MeSH
- Aesculus chemie MeSH
- extracelulární matrix účinky léků metabolismus MeSH
- hojení ran účinky léků MeSH
- krysa rodu Rattus MeSH
- molekulární struktura MeSH
- myofibroblasty účinky léků metabolismus MeSH
- pevnost v tahu MeSH
- regenerace MeSH
- rostlinné extrakty chemie farmakologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné extrakty MeSH
The ability of horse chestnut extract (HCE) to induce contraction force in fibroblasts, a process with remarkable significance in skin repair, motivated us to evaluate its wound healing potential in a series of experiments. In the in vitro study of the ability of human dermal fibroblasts to form myofibroblast-like cells was evaluated at the protein level (Western blot and immunofluorescence). The in vivo study was conducted on male Sprague-Dawley rats with inflicted wounds (one open circular and one sutured incision) on their backs. Rats were topically treated with two tested HCE concentrations (0.1% and 1%) or sterile water. The control group remained untreated. The incisions were processed for wound tensile strength (TS) measurement whereas the open wounds were subjected to histological examination. On the in vitro level the HCE extract induced fibronectin-rich extracellular matrix formation, but did not induced α-smooth muscle actin (SMA) expression in dermal fibroblasts. The animal study revealed that HCE increased wound TS and improved collagen organization. In conclusion, the direct comparison of both basic wound models demonstrated that the healing was significantly increased following HCE, thus this extract may be found useful to improve healing of acute wounds. Nevertheless, the use of an experimental rat model warrants a direct extrapolation to the human clinical situation.
Department of Pathology Louise Pasteur University Hospital 041 90 Košice Slovakia
Department of Pharmacology Faculty of Medicine Pavol Jozef Šafárik University 040 11 Košice Slovakia
Institute of Anatomy 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI
Gal P., Varinska L., Faber L., Novak S., Szabo P., Mitrengova P., Mirossay A., Mucaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC
Deonarine K., Panelli M.C., Stashower M.E., Jin P., Smith K., Slade H.B., Norwood C., Wang E., Marincola F.M., Stroncek D.F. Gene expression profiling of cutaneous wound healing. J. Transl. Med. 2007;5:11. doi: 10.1186/1479-5876-5-11. PubMed DOI PMC
Clark R.A., Ghosh K., Tonnesen M.G. Tissue engineering for cutaneous wounds. J. Invest. Dermatol. 2007;127:1018–1029. doi: 10.1038/sj.jid.5700715. PubMed DOI
Smetana Jr K., Szabo P., Gal P., Andre S., Gabius H.J., Kodet O., Dvorankova B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. doi: 10.14670/HH-30.293. PubMed DOI
Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. PubMed DOI
Leach M.J., Pincombe J., Foster G. Clinical efficacy of horsechestnut seed extract in the treatment of venous ulceration. J. Wound. Care. 2006;15:159–167. doi: 10.12968/jowc.2006.15.4.26898. PubMed DOI
Fujimura T., Moriwaki S., Hotta M., Kitahara T., Takema Y. Horse chestnut extract induces contraction force generation in fibroblasts through activation of Rho/Rho kinase. Biol. Pharm. Bull. 2006;29:1075–1081. doi: 10.1248/bpb.29.1075. PubMed DOI
Braga P.C., Marabini L., Wang Y.Y., Lattuada N., Calo R., Bertelli A., Falchi M., Dal Sasso M., Bianchi T. Characterisation of the antioxidant effects of Aesculus hippocastanum L. bark extract on the basis of radical scavenging activity, the chemiluminescence of human neutrophil bursts and lipoperoxidation assay. Eur. Rev. Med. Pharmacol. Sci. 2012;16:1–9. PubMed
Vaskova J., Fejercakova A., Mojzisova G., Vasko L., Patlevic P. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species. Eur. Rev. Med. Pharmacol. Sci. 2015;19:879–886. PubMed
Fujimura T., Tsukahara K., Moriwaki S., Hotta M., Kitahara T., Takema Y. A horse chestnut extract, which induces contraction forces in fibroblasts, is a potent anti-aging ingredient. J. Cosmet. Sci. 2006;57:369–376. doi: 10.1111/j.1467-2494.2007.00369_3.x. PubMed DOI
Aksoy H., Cevik O., Sen A., Goger F., Sekerler T., Sener A. Effect of Horse-chestnut seed extract on matrix metalloproteinase-1 and -9 during diabetic wound healing. J. Food Biochem. 2019;43:e12758. doi: 10.1111/jfbc.12758. PubMed DOI
Sirtori C.R. Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacol. Res. 2001;44:183–193. doi: 10.1006/phrs.2001.0847. PubMed DOI
Gal P., Toporcer T., Vidinsky B., Mokry M., Novotny M., Kilik R., Smetana K., Jr., Gal T., Sabo J. Early changes in the tensile strength and morphology of primary sutured skin wounds in rats. Folia. Biol. (Praha.) 2006;52:109–115. PubMed
Hinz B. The role of myofibroblasts in wound healing. Curr. Res. Transl. Med. 2016;64:171–177. doi: 10.1016/j.retram.2016.09.003. PubMed DOI
Zhao S.Q., Xu S.Q., Cheng J., Cao X.L., Zhang Y., Zhou W.P., Huang Y.J., Wang J., Hu X.M. Anti-inflammatory effect of external use of escin on cutaneous inflammation: possible involvement of glucocorticoids receptor. Chin. J. Nat. Med. 2018;16:105–112. doi: 10.1016/S1875-5364(18)30036-0. PubMed DOI
Novotny M., Vasilenko T., Varinska L., Smetana K., Jr., Szabo P., Sarissky M., Dvorankova B., Mojzis J., Bobrov N., Toporcerova S., et al. ER-alpha agonist induces conversion of fibroblasts into myofibroblasts, while ER-beta agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats. Exp. Dermatol. 2011;20:703–708. doi: 10.1111/j.1600-0625.2011.01284.x. PubMed DOI
Gal P., Stausholm M.B., Kovac I., Dosedla E., Luczy J., Sabol F., Bjordal J.M. Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers. Med. Sci. 2018;33:1351–1362. doi: 10.1007/s10103-018-2496-7. PubMed DOI
Abudayeh Z.H., Al Azzam K.M., Naddaf A., Karpiuk U.V., Kislichenko V.S. Determination of Four Major Saponins in Skin and Endosperm of Seeds of Horse Chestnut (Aesculus Hippocastanum L.) Using High Performance Liquid Chromatography with Positive Confirmation by Thin Layer Chromatography. Adv. Pharm Bull. 2015;5:587–591. doi: 10.15171/apb.2015.079. PubMed DOI PMC
Zhang L., Wang H., Wang T., Jiang N., Yu P., Liu F., Chong Y., Fu F. Potent anti-inflammatory agent escin does not affect the healing of tibia fracture and abdominal wound in an animal model. Exp. Ther. Med. 2012;3:735–739. doi: 10.3892/etm.2012.467. PubMed DOI PMC
Cheong D.H.J., Arfuso F., Sethi G., Wang L., Hui K.M., Kumar A.P., Tran T. Molecular targets and anti-cancer potential of escin. Cancer Lett. 2018;422:1–8. doi: 10.1016/j.canlet.2018.02.027. PubMed DOI
Elmowafy M., Shalaby K., Salama A., Soliman G.M., Alruwaili N.K., Mostafa E.M., Mohammed E.F., Moustafa A., Zafar A. Soy isoflavone-loaded alginate microspheres in thermosensitive gel base: Attempts to improve wound-healing efficacy. J. Pharm. Pharmacol. 2019;71:774–787. doi: 10.1111/jphp.13066. PubMed DOI
Varinska L., Faber L., Kello M., Petrovova E., Balazova L., Solar P., Coma M., Urdzik P., Mojzis J., Svajdlenka E., et al. beta-Escin Effectively Modulates HUVECS Proliferation and Tube Formation. Molecules. 2018;23:197. doi: 10.3390/molecules23010197. PubMed DOI PMC
Strnad H., Lacina L., Kolar M., Cada Z., Vlcek C., Dvorankova B., Betka J., Plzak J., Chovanec M., Sachova J., et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell. Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI
Brenmoehl J., Miller S.N., Hofmann C., Vogl D., Falk W., Scholmerich J., Rogler G. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J. Gastroenterol. 2009;15:1431–1442. doi: 10.3748/wjg.15.1431. PubMed DOI PMC
Wong M., Mudera V. Feedback inhibition of high TGF-beta1 concentrations on myofibroblast induction and contraction by Dupuytren’s fibroblasts. J. Hand. Surg. Br. 2006;31:473–483. doi: 10.1016/J.JHSB.2006.05.007. PubMed DOI
Gal P., Toporcer T., Vidinsky B., Hudak R., Zivcak J., Sabo J. Simple interrupted percutaneous suture versus intradermal running suture for wound tensile strength measurement in rats: A technical note. Eur. Surg. Res. 2009;43:61–65. doi: 10.1159/000219214. PubMed DOI
Kovac I., Durkac J., Holly M., Jakubcova K., Perzelova V., Mucaji P., Svajdlenka E., Sabol F., Legath J., Belak J., et al. Plantago lanceolata L. water extract induces transition of fibroblasts into myofibroblasts and increases tensile strength of healing skin wounds. J. Pharm. Pharmacol. 2015;67:117–125. doi: 10.1111/jphp.12316. PubMed DOI