Ecological consequences of body size reduction under warming
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
KU Leuven
French National Research Agency (ANR)
ANR
Grant Agency of the Czech Republic
FWO
PubMed
39166384
PubMed Central
PMC11337126
DOI
10.1098/rspb.2024.1250
Knihovny.cz E-zdroje
- Klíčová slova
- bioenergetics, body size shift, ectotherms, predictive ecology, surface-to-volume ratio, temperature-size rule,
- MeSH
- ekosystém * MeSH
- globální oteplování MeSH
- klimatické změny MeSH
- velikost těla * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Body size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio. Using this framework, we synthesize key consequences of warming-induced body size reductions at multiple levels of biological organization. We outline how this trait-based framework can improve our understanding, detection and generalization of the ecological impacts of warming.
Zobrazit více v PubMed
Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 2011. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26 , 285–291. (10.1016/j.tree.2011.03.005) PubMed DOI
Martins IS, et al. . 2023. Widespread shifts in body size within populations and assemblages. Science 381 , 1067–1071. (10.1126/science.adg6006) PubMed DOI
Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A. 2022. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol. Lett. 25 , 1177–1188. (10.1111/ele.13989) PubMed DOI PMC
Thunell V, Gårdmark A, Huss M, Vindenes Y. 2023. Optimal energy allocation trade‐off driven by size‐dependent physiological and demographic responses to warming. Ecology 104 , e3967. (10.1002/ecy.3967) PubMed DOI
Ohlberger J. 2013. Climate warming and ectotherm body size: from individual physiology to community ecology. Funct. Ecol. 27 , 991–1001. (10.1111/1365-2435.12098) DOI
Coghlan AR, Blanchard JL, Wotherspoon S, Stuart-Smith RD, Edgar GJ, Barrett N, Audzijonyte A. 2024. Mean reef fish body size decreases towards warmer waters. Ecol. Lett. 27 , e14375. (10.1111/ele.14375) PubMed DOI
Verberk W, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. 2021. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96 , 247–268. (10.1111/brv.12653) PubMed DOI PMC
Atkinson D. 1994. Temperature and organism size: a biological law for etotherms? Adv. Ecol. Res. 25 , 1–58. (10.1016/S0065-2504(08)60212-3) DOI
Forster J, Hirst AG, Atkinson D. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109 , 19310–19314. (10.1073/pnas.1210460109) PubMed DOI PMC
Audzijonyte A, Richards SA, Stuart-Smith RD, Pecl G, Edgar GJ, Barrett NS, Payne N, Blanchard JL. 2020. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4 , 809–814. (10.1038/s41559-020-1171-0) PubMed DOI
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85 , 1771–1789. (10.1890/03-9000) DOI
Marty L, Dieckmann U, Rochet MJ, Ernande B. 2011. Impact of environmental covariation in growth and mortality on evolving maturation reaction norms. Am. Nat. 177 , E98–118. (10.1086/658988) PubMed DOI
Arendt JD. 2011. Size-fecundity relationships, growth trajectories, and the temperature-size rule for ectotherms. Evolution 65 , 43–51. (10.1111/j.1558-5646.2010.01112.x) PubMed DOI
Bazin S, Hemmer-Brepson C, Logez M, Sentis A, Daufresne M. 2023. Distinct impacts of feeding frequency and warming on life history traits affect population fitness in vertebrate ectotherms. Ecol. Evol. 13 , e10770. (10.1002/ece3.10770) PubMed DOI PMC
Bazin S, et al. . Direct effect of artificial warming on communities is stronger than its indirect effect through body mass reduction. Oikos (10.1111/oik.10561) DOI
Daufresne M, Lengfellner K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106 , 12788–12793. (10.1073/pnas.0902080106) PubMed DOI PMC
Hatton IA, Dobson AP, Storch D, Galbraith ED, Loreau M. 2019. Linking scaling laws across eukaryotes. Proc. Natl Acad. Sci. USA 116 , 21616–21622. (10.1073/pnas.1900492116) PubMed DOI PMC
Peters RH. 1983. The ecological implications of body size. Cambridge, UK: Cambridge University Press. (10.1017/CBO9780511608551) DOI
Sentis A, Binzer A, Boukal DS. 2017. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20 , 852–862. (10.1111/ele.12779) PubMed DOI
Bernhardt JR, Sunday JM, O’Connor MI. 2018. Metabolic theory and the temperature-size rule explain the temperature dependence of population carrying capacity. Am. Nat. 192 , 687–697. (10.1086/700114) PubMed DOI
Osmond MM, Barbour MA, Bernhardt JR, Pennell MW, Sunday JM, O’Connor MI. 2017. Warming-induced changes to body size stabilize consumer-resource dynamics. Am. Nat. 189 , 718–725. (10.1086/691387) PubMed DOI
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. 2022. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J. Anim. Ecol. 91 , 1975–1987. (10.1111/1365-2656.13710) PubMed DOI
Fryxell DC, Hoover AN, Alvarez DA, Arnesen FJ, Benavente JN, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. 2020. Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proc. R. Soc. B 287 , 20200608. (10.1098/rspb.2020.0608) PubMed DOI PMC
Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, Vucic-Pestic O, Petchey OL. 2012. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367 , 2923–2934. (10.1098/rstb.2012.0242) PubMed DOI PMC
Sentis A, Haegeman B, Montoya JM. 2022. Stoichiometric constraints modulate temperature and nutrient effects on biomass distribution and community stability. Oikos 2022 , 2–11. (10.1111/oik.08601) PubMed DOI PMC
Uiterwaal SF, DeLong JP. 2020. Functional responses are maximized at intermediate temperatures. Ecology 101 , e02975. (10.1002/ecy.2975) PubMed DOI
Li G, Xie H, He D, Luo Y. 2016. Effects of body chemical components on the allometric scaling of the resting metabolic rate in four species of cyprinids. Fish Physiol. Biochem. 42 , 295–301. (10.1007/s10695-015-0137-7) PubMed DOI
Buchwalter DB, Sandahl JF, Jenkins JJ, Curtis LR. 2004. Roles of uptake, biotransformation, and target site sensitivity in determining the differential toxicity of chlorpyrifos to second to fourth instar Chironomous riparius (Meigen). Aquat. Toxicol. 66 , 149–157. (10.1016/j.aquatox.2003.08.004) PubMed DOI
Potapov AM, Brose U, Scheu S, Tiunov AV. 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194 , 823–839. (10.1086/705811) PubMed DOI
Tejeda MT, Arredondo J, Pérez-Staples D, Ramos-Morales P, Liedo P, Díaz-Fleischer F. 2014. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70 , 73–80. (10.1016/j.jinsphys.2014.08.011) PubMed DOI
Verheyen J, Stoks R. 2019. Shrinking body size and physiology contribute to geographic variation and the higher toxicity of pesticides in a warming world. Environ. Sci. Technol. 53 , 11515–11523. (10.1021/acs.est.9b03806) PubMed DOI
Kingsolver JG, Huey RB. 2008. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10 , 251. (10.17615/jtzc-v174) DOI
Teder T. 2020. Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos 129 , 1051–1060. (10.1111/oik.07119) DOI
Hemptinne JL, Lecompte E, Sentis A, Dixon AFG, Magro A. 2022. Prey life-history influences the evolution of egg mass and indirectly reproductive investment in a group of free-living insect predators. Ecol. Evol. 12 , e8438. (10.1002/ece3.8438) PubMed DOI PMC
Barneche DR, Robertson DR, White CR, Marshall DJ. 2018. Fish reproductive-energy output increases disproportionately with body size. Science 360 , 642–645. (10.1126/science.aao6868) PubMed DOI
Angilletta Jr. MJ. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford, UK: Oxford University Press. (10.1093/acprof:oso/9780198570875.001.1) DOI
Luhring TM, Vavra JM, Cressler CE, DeLong JP. 2018. Predators modify the temperature dependence of life-history trade-offs. Ecol. Evol. 8 , 8818–8830. (10.1002/ece3.4381) PubMed DOI PMC
Budd AM, Robins JB, Whybird O, Jerry DR. 2022. Epigenetics underpins phenotypic plasticity of protandrous sex change in fish. Ecol. Evol. 12 , e8730. (10.1002/ece3.8730) PubMed DOI PMC
Hernández-Pacheco R, Plard F, Grayson KL, Steiner UK. 2021. Demographic consequences of changing body size in a terrestrial salamander. Ecol. Evol. 11 , 174–185. (10.1002/ece3.6988) PubMed DOI PMC
Loisel A, Isla A, Daufresne M. 2019. Variation of thermal plasticity in growth and reproduction patterns: importance of ancestral and developmental temperatures. J. Therm. Biol. 84 , 460–468. (10.1016/j.jtherbio.2019.07.029) PubMed DOI
Lorenzen K. 2022. Size- and age-dependent natural mortality in fish populations: biology, models, implications, and a generalized length-inverse mortality paradigm. Fish. Res. 255 , 106454. (10.1016/j.fishres.2022.106454) DOI
Roff DA. 2002. Life history evolution. Sunderland, MA: Sinauer Associates. (10.1016/B978-0-12-384719-5.00087-3) DOI
Beckerman AP, Rodgers GM, Dennis SR. 2010. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79 , 1069–1076. (10.1111/j.1365-2656.2010.01703.x) PubMed DOI
Cloyed CS, Grady JM, Savage VM, Uyeda JC, Dell AI. 2021. The allometry of locomotion. Ecology 102 , e03369. (10.1002/ecy.3369) PubMed DOI
Jenkins DG, et al. . 2007. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16 , 415–425. (10.1111/j.1466-8238.2007.00312.x) DOI
Lovejoy RT, Lozier JD. 2021. Core‐marginal dynamics interact with sex and temperature to influence morphology of the rapidly expanding invasive kudzu bug (Megacopta cribraria). Ecol. Entomol. 46 , 790–799. (10.1111/een.13007) DOI
McCauley SJ, Mabry KE. 2011. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26 , 554–555. (10.1016/j.tree.2011.06.017) PubMed DOI
Leith NT, Fowler-Finn KD, Moore MP. 2022. Evolutionary interactions between thermal ecology and sexual selection. Ecol. Lett. 25 , 1919–1936. (10.1111/ele.14072) PubMed DOI
Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA, Sentis A, McCoy MW, Alexander ME. 2020. Influence of intra- and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecol. Evol. 10 , 5946–5962. (10.1002/ece3.6332) PubMed DOI PMC
Bideault A, Loreau M, Gravel D. 2019. Temperature modifies consumer-resource interaction strength through its effects on biological rates and body mass. Front. Ecol. Evol. 7 , 45. (10.3389/fevo.2019.00045) DOI
Kozlowski J, Czarnoleski M, Danko M. 2004. Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr. Comp. Biol. 44 , 480–493. (10.1093/icb/44.6.480) PubMed DOI
Kratina P, Rosenbaum B, Gallo B, Horas EL, O’Gorman EJ. 2022. The combined effects of warming and body size on the stability of predator-prey interactions. Front. Ecol. Evol. 9 . (10.3389/fevo.2021.772078) DOI
Daugaard U, Petchey OL, Pennekamp F. 2019. Warming can destabilize predator–prey interactions by shifting the functional response from type III to type II. J. Anim. Ecol. 88 , 1575–1586. (10.1111/1365-2656.13053) PubMed DOI
Ohlberger J, Edeline E, Vøllestad LA, Stenseth NC, Claessen D. 2011. Temperature-driven regime shifts in the dynamics of size-structured populations. Am. Nat. 177 , 211–223. (10.1086/657925) PubMed DOI
Gårdmark A, Huss M. 2020. Individual variation and interactions explain food web responses to global warming. Phil. Trans. R. Soc. B 375 , 20190449. (10.1098/rstb.2019.0449) PubMed DOI PMC
Gilbert B, et al. . 2014. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17 , 902–914. (10.1111/ele.12307) PubMed DOI
DeLong JP, et al. . 2015. The body size dependence of trophic cascades. Am. Nat. 185 , 354–366. (10.1086/679735) PubMed DOI
Polazzo F, Marina TI, Crettaz-Minaglia M, Rico A. 2022. Food web rewiring drives long-term compositional differences and late-disturbance interactions at the community level. Proc. Natl Acad. Sci. USA 119 , e2117364119. (10.1073/pnas.2117364119) PubMed DOI PMC
Raffard A, Cucherousset J, Montoya JM, Richard M, Acoca-Pidolle S, Poésy C, Garreau A, Santoul F, Blanchet S. 2021. Intraspecific diversity loss in a predator species alters prey community structure and ecosystem functions. PLoS Biol. 19 , e3001145. (10.1371/journal.pbio.3001145) PubMed DOI PMC
Leclerc C, et al. . 2023. Temperature, productivity, and habitat characteristics collectively drive lake food web structure. Glob. Chang. Biol. 29 , 2450–2465. (10.1111/gcb.16642) PubMed DOI
Verberk WC, Buchwalter DB, Kefford BJ. 2020. Energetics as a lens to understanding aquatic insect’s responses to changing temperature, dissolved oxygen and salinity regimes. Curr. Opin. Insect Sci. 41 , 46–53. (10.1016/j.cois.2020.06.001) PubMed DOI
Leiva FP, Calosi P, Verberk WCEP. 2019. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Phil. Trans. R. Soc. B 374 , 20190035. (10.1098/rstb.2019.0035) PubMed DOI PMC
Gergs A, Gabsi F, Zenker A, Preuss TG. 2016. Demographic toxicokinetic–toxicodynamic modeling of lethal effects. Environ. Sci. Technol. 50 , 6017–6024. (10.1021/acs.est.6b01113) PubMed DOI
Huang A, Roessink I, van den Brink NW, van den Brink PJ. 2022. Size- and sex-related sensitivity differences of aquatic crustaceans to imidacloprid. Ecotoxicol. Environ. Saf. 242 , 113917. (10.1016/j.ecoenv.2022.113917) PubMed DOI
Buchwalter DB, Cain DJ, Martin CA, Xie L, Luoma SN, Garland T. 2008. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proc. Natl Acad. Sci. USA 105 , 8321–8326. (10.1073/pnas.0801686105) PubMed DOI PMC
Rubach MN, Baird DJ, Boerwinkel MC, Maund SJ, Roessink I, Van den Brink PJ. 2012. Species traits as predictors for intrinsic sensitivity of aquatic Invertebrates to the insecticide chlorpyrifos. Ecotoxicology 21 , 2088–2101. (10.1007/s10646-012-0962-8) PubMed DOI PMC
Zuo Y, Southard M, Xu Q, Zhang G, Skibinski E, Moon N, Gan L, Chen Y, Jiang L. 2024. Cell size-dependent species sensitivity to nanoparticles underlies changes in phytoplankton diversity and productivity. Glob. Chang. Biol. 30 , e17049. (10.1111/gcb.17049) PubMed DOI
Nilsson GE, Ostlund-Nilsson S. 2008. Does size matter for hypoxia tolerance in fish? Biol. Rev. 83 , 173–189. (10.1111/j.1469-185X.2008.00038.x) PubMed DOI
Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. 2022. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature‐dependent manner. Glob. Chang. Biol. 28 , 5695–5707. (10.1111/gcb.16319) PubMed DOI PMC
Peralta-Maraver I, Rezende EL. 2021. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11 , 58–63. (10.1038/s41558-020-00938-y) DOI
Buckley LB. 2021. Body size shapes thermal stress. Nat. Clim. Change 11 , 5–6. (10.1038/s41558-020-00948-w) DOI
Brans KI, Jansen M, Vanoverbeke J, Tüzün N, Stoks R, De Meester L. 2017. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Chang. Biol. 23 , 5218–5227. (10.1111/gcb.13784) PubMed DOI
Baudier KM, Mudd AE, Erickson SC, O’Donnell S. 2015. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84 , 1322–1330. (10.1111/1365-2656.12388) PubMed DOI
Blanckenhorn WU. 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111 , 977–1016. (10.1111/j.1439-0310.2005.01147.x) DOI
Uszko W, Huss M, Gårdmark A. 2022. Smaller species but larger stages: warming effects on inter‐ and intraspecific community size structure. Ecology 103 , e3699. (10.1002/ecy.3699) PubMed DOI PMC
Lindmark M, Huss M, Ohlberger J, Gårdmark A, Adler F. 2018. Temperature‐dependent body size effects determine population responses to climate warming. Ecol. Lett. 21 , 181–189. (10.1111/ele.12880) PubMed DOI
Reuman DC, Holt RD, Yvon-Durocher G. 2014. A metabolic perspective on competition and body size reductions with warming. J. Anim. Ecol. 83 , 59–69. (10.1111/1365-2656.12064) PubMed DOI
Thunell V, Lindmark M, Huss M, Gårdmark A. 2021. Effects of warming on intraguild predator communities with ontogenetic diet shifts. Am. Nat. 198 , 706–718. (10.1086/716927) PubMed DOI
Lindmark M, Ohlberger J, Huss M, Gårdmark A. 2019. Size-based ecological interactions drive food web responses to climate warming. Ecol. Lett. 22 , 778–786. (10.1111/ele.13235) PubMed DOI PMC
Gergs A, Zenker A, Grimm V, Preuss TG. 2013. Chemical and natural stressors combined: from cryptic effects to population extinction. Sci. Rep. 3 , 1–8. (10.1038/srep02036) PubMed DOI PMC
Rossberg AG, Gaedke U, Kratina P. 2019. Dome patterns in pelagic size spectra reveal strong trophic cascades. Nat. Commun. 10 , 4396. (10.1038/s41467-019-12289-0) PubMed DOI PMC
Hall R, Koch BJ, Marshall MC, Taylor BW. How body size mediates the role of animals in nutrient cycling in aquatic ecosystems. In Body size: the structure and function of aquatic ecosystems (eds Hildrew AG, Raffaelli DG, Edmonds-Brown R), pp. 286–305. Cambridge, UK: Cambridge University Press. (10.1017/CBO9780511611223) DOI
Gebert F, Steffan-Dewenter I, Kronbach P, Peters MK. 2022. The role of diversity, body size and climate in dung removal: a correlative and experimental approach. J. Anim. Ecol. 91 , 2181–2191. (10.1111/1365-2656.13798) PubMed DOI
Theodorou P, Baltz LM, Paxton RJ, Soro A. 2021. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 14 , 53–68. (10.1111/eva.13087) PubMed DOI PMC
Vangansbeke D, Duarte MV, Gobin B, Tirry L, Wäckers F, De Clercq P. 2020. Cold‐born killers: exploiting temperature–size rule enhances predation capacity of a predatory mite. Pest Manag. Sci. 76 , 1841–1846. (10.1002/ps.5713) PubMed DOI
Lindmark M, Audzijonyte A, Blanchard JL, Gårdmark A. 2022. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. Glob. Chang. Biol. 28 , 6239–6253. (10.1111/gcb.16341) PubMed DOI PMC
Glazier DS. 2005. Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals. Biol. Rev. 80 , 611–662. (10.1017/S1464793105006834) PubMed DOI
Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413 , 591–596. (10.1038/35098000) PubMed DOI
Gårdmark A, Casini M, Huss M, van Leeuwen A, Hjelm J, Persson L, de Roos AM. 2015. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory. Phil. Trans. R. Soc. B 370 , 20130262. (10.1098/rstb.2013.0262) DOI
Dijoux S, Boukal DS. 2021. Community structure and collapses in multichannel food webs: role of consumer body sizes and Mesohabitat productivities. Ecol. Lett. 24 , 1607–1618. (10.1111/ele.13772) PubMed DOI
Glazier DS. 2022. Variable metabolic scaling breaks the law: from ‘Newtonian’ to ‘Darwinian’ approaches. Proc. R. Soc. B 289 , 20221605. (10.1098/rspb.2022.1605) PubMed DOI PMC
Harrison JF, et al. . 2022. White paper: an integrated perspective on the causes of hypometric metabolic scaling in animals. Integr. Comp. Biol. 62 , 1395–1418. (10.1093/icb/icac136) PubMed DOI PMC
Alster CJ, Weller ZD, von Fischer JC. 2018. A meta-analysis of temperature sensitivity as a microbial trait. Glob. Chang. Biol. 24 , 4211–4224. (10.1111/gcb.14342) PubMed DOI
Dinh KV, Konestabo HS, Borgå K, Hylland K, Macaulay SJ, Jackson MC, Verheyen J, Stoks R. 2022. Interactive effects of warming and pollutants on marine and freshwater invertebrates. Curr. Pollut. Rep. 8 , 341–359. (10.1007/s40726-022-00245-4) DOI
Streit RP, Bellwood DR. 2023. To harness traits for ecology, let’s abandon ‘functionality. Trends Ecol. Evol. 38 , 402–411. (10.1016/j.tree.2022.11.009) PubMed DOI
Sentis A, Simon B, Boukal D, Stoks R. 2024. Data from: Ecological consequences of body size reduction under warming. Figshare. (10.6084/m9.figshare.c.7403398) PubMed DOI PMC
Ecological consequences of body size reduction under warming