Ecological consequences of body size reduction under warming

. 2024 Aug ; 291 (2029) : 20241250. [epub] 20240821

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39166384

Grantová podpora
KU Leuven
French National Research Agency (ANR)
ANR
Grant Agency of the Czech Republic
FWO

Body size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio. Using this framework, we synthesize key consequences of warming-induced body size reductions at multiple levels of biological organization. We outline how this trait-based framework can improve our understanding, detection and generalization of the ecological impacts of warming.

Zobrazit více v PubMed

Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 2011. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26 , 285–291. (10.1016/j.tree.2011.03.005) PubMed DOI

Martins IS, et al. . 2023. Widespread shifts in body size within populations and assemblages. Science 381 , 1067–1071. (10.1126/science.adg6006) PubMed DOI

Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A. 2022. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol. Lett. 25 , 1177–1188. (10.1111/ele.13989) PubMed DOI PMC

Thunell V, Gårdmark A, Huss M, Vindenes Y. 2023. Optimal energy allocation trade‐off driven by size‐dependent physiological and demographic responses to warming. Ecology 104 , e3967. (10.1002/ecy.3967) PubMed DOI

Ohlberger J. 2013. Climate warming and ectotherm body size: from individual physiology to community ecology. Funct. Ecol. 27 , 991–1001. (10.1111/1365-2435.12098) DOI

Coghlan AR, Blanchard JL, Wotherspoon S, Stuart-Smith RD, Edgar GJ, Barrett N, Audzijonyte A. 2024. Mean reef fish body size decreases towards warmer waters. Ecol. Lett. 27 , e14375. (10.1111/ele.14375) PubMed DOI

Verberk W, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. 2021. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96 , 247–268. (10.1111/brv.12653) PubMed DOI PMC

Atkinson D. 1994. Temperature and organism size: a biological law for etotherms? Adv. Ecol. Res. 25 , 1–58. (10.1016/S0065-2504(08)60212-3) DOI

Forster J, Hirst AG, Atkinson D. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109 , 19310–19314. (10.1073/pnas.1210460109) PubMed DOI PMC

Audzijonyte A, Richards SA, Stuart-Smith RD, Pecl G, Edgar GJ, Barrett NS, Payne N, Blanchard JL. 2020. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4 , 809–814. (10.1038/s41559-020-1171-0) PubMed DOI

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85 , 1771–1789. (10.1890/03-9000) DOI

Marty L, Dieckmann U, Rochet MJ, Ernande B. 2011. Impact of environmental covariation in growth and mortality on evolving maturation reaction norms. Am. Nat. 177 , E98–118. (10.1086/658988) PubMed DOI

Arendt JD. 2011. Size-fecundity relationships, growth trajectories, and the temperature-size rule for ectotherms. Evolution 65 , 43–51. (10.1111/j.1558-5646.2010.01112.x) PubMed DOI

Bazin S, Hemmer-Brepson C, Logez M, Sentis A, Daufresne M. 2023. Distinct impacts of feeding frequency and warming on life history traits affect population fitness in vertebrate ectotherms. Ecol. Evol. 13 , e10770. (10.1002/ece3.10770) PubMed DOI PMC

Bazin S, et al. . Direct effect of artificial warming on communities is stronger than its indirect effect through body mass reduction. Oikos (10.1111/oik.10561) DOI

Daufresne M, Lengfellner K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106 , 12788–12793. (10.1073/pnas.0902080106) PubMed DOI PMC

Hatton IA, Dobson AP, Storch D, Galbraith ED, Loreau M. 2019. Linking scaling laws across eukaryotes. Proc. Natl Acad. Sci. USA 116 , 21616–21622. (10.1073/pnas.1900492116) PubMed DOI PMC

Peters RH. 1983. The ecological implications of body size. Cambridge, UK: Cambridge University Press. (10.1017/CBO9780511608551) DOI

Sentis A, Binzer A, Boukal DS. 2017. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20 , 852–862. (10.1111/ele.12779) PubMed DOI

Bernhardt JR, Sunday JM, O’Connor MI. 2018. Metabolic theory and the temperature-size rule explain the temperature dependence of population carrying capacity. Am. Nat. 192 , 687–697. (10.1086/700114) PubMed DOI

Osmond MM, Barbour MA, Bernhardt JR, Pennell MW, Sunday JM, O’Connor MI. 2017. Warming-induced changes to body size stabilize consumer-resource dynamics. Am. Nat. 189 , 718–725. (10.1086/691387) PubMed DOI

Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. 2022. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J. Anim. Ecol. 91 , 1975–1987. (10.1111/1365-2656.13710) PubMed DOI

Fryxell DC, Hoover AN, Alvarez DA, Arnesen FJ, Benavente JN, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. 2020. Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proc. R. Soc. B 287 , 20200608. (10.1098/rspb.2020.0608) PubMed DOI PMC

Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, Vucic-Pestic O, Petchey OL. 2012. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367 , 2923–2934. (10.1098/rstb.2012.0242) PubMed DOI PMC

Sentis A, Haegeman B, Montoya JM. 2022. Stoichiometric constraints modulate temperature and nutrient effects on biomass distribution and community stability. Oikos 2022 , 2–11. (10.1111/oik.08601) PubMed DOI PMC

Uiterwaal SF, DeLong JP. 2020. Functional responses are maximized at intermediate temperatures. Ecology 101 , e02975. (10.1002/ecy.2975) PubMed DOI

Li G, Xie H, He D, Luo Y. 2016. Effects of body chemical components on the allometric scaling of the resting metabolic rate in four species of cyprinids. Fish Physiol. Biochem. 42 , 295–301. (10.1007/s10695-015-0137-7) PubMed DOI

Buchwalter DB, Sandahl JF, Jenkins JJ, Curtis LR. 2004. Roles of uptake, biotransformation, and target site sensitivity in determining the differential toxicity of chlorpyrifos to second to fourth instar Chironomous riparius (Meigen). Aquat. Toxicol. 66 , 149–157. (10.1016/j.aquatox.2003.08.004) PubMed DOI

Potapov AM, Brose U, Scheu S, Tiunov AV. 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194 , 823–839. (10.1086/705811) PubMed DOI

Tejeda MT, Arredondo J, Pérez-Staples D, Ramos-Morales P, Liedo P, Díaz-Fleischer F. 2014. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70 , 73–80. (10.1016/j.jinsphys.2014.08.011) PubMed DOI

Verheyen J, Stoks R. 2019. Shrinking body size and physiology contribute to geographic variation and the higher toxicity of pesticides in a warming world. Environ. Sci. Technol. 53 , 11515–11523. (10.1021/acs.est.9b03806) PubMed DOI

Kingsolver JG, Huey RB. 2008. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10 , 251. (10.17615/jtzc-v174) DOI

Teder T. 2020. Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos 129 , 1051–1060. (10.1111/oik.07119) DOI

Hemptinne JL, Lecompte E, Sentis A, Dixon AFG, Magro A. 2022. Prey life-history influences the evolution of egg mass and indirectly reproductive investment in a group of free-living insect predators. Ecol. Evol. 12 , e8438. (10.1002/ece3.8438) PubMed DOI PMC

Barneche DR, Robertson DR, White CR, Marshall DJ. 2018. Fish reproductive-energy output increases disproportionately with body size. Science 360 , 642–645. (10.1126/science.aao6868) PubMed DOI

Angilletta Jr. MJ. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford, UK: Oxford University Press. (10.1093/acprof:oso/9780198570875.001.1) DOI

Luhring TM, Vavra JM, Cressler CE, DeLong JP. 2018. Predators modify the temperature dependence of life-history trade-offs. Ecol. Evol. 8 , 8818–8830. (10.1002/ece3.4381) PubMed DOI PMC

Budd AM, Robins JB, Whybird O, Jerry DR. 2022. Epigenetics underpins phenotypic plasticity of protandrous sex change in fish. Ecol. Evol. 12 , e8730. (10.1002/ece3.8730) PubMed DOI PMC

Hernández-Pacheco R, Plard F, Grayson KL, Steiner UK. 2021. Demographic consequences of changing body size in a terrestrial salamander. Ecol. Evol. 11 , 174–185. (10.1002/ece3.6988) PubMed DOI PMC

Loisel A, Isla A, Daufresne M. 2019. Variation of thermal plasticity in growth and reproduction patterns: importance of ancestral and developmental temperatures. J. Therm. Biol. 84 , 460–468. (10.1016/j.jtherbio.2019.07.029) PubMed DOI

Lorenzen K. 2022. Size- and age-dependent natural mortality in fish populations: biology, models, implications, and a generalized length-inverse mortality paradigm. Fish. Res. 255 , 106454. (10.1016/j.fishres.2022.106454) DOI

Roff DA. 2002. Life history evolution. Sunderland, MA: Sinauer Associates. (10.1016/B978-0-12-384719-5.00087-3) DOI

Beckerman AP, Rodgers GM, Dennis SR. 2010. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79 , 1069–1076. (10.1111/j.1365-2656.2010.01703.x) PubMed DOI

Cloyed CS, Grady JM, Savage VM, Uyeda JC, Dell AI. 2021. The allometry of locomotion. Ecology 102 , e03369. (10.1002/ecy.3369) PubMed DOI

Jenkins DG, et al. . 2007. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16 , 415–425. (10.1111/j.1466-8238.2007.00312.x) DOI

Lovejoy RT, Lozier JD. 2021. Core‐marginal dynamics interact with sex and temperature to influence morphology of the rapidly expanding invasive kudzu bug (Megacopta cribraria). Ecol. Entomol. 46 , 790–799. (10.1111/een.13007) DOI

McCauley SJ, Mabry KE. 2011. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26 , 554–555. (10.1016/j.tree.2011.06.017) PubMed DOI

Leith NT, Fowler-Finn KD, Moore MP. 2022. Evolutionary interactions between thermal ecology and sexual selection. Ecol. Lett. 25 , 1919–1936. (10.1111/ele.14072) PubMed DOI

Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA, Sentis A, McCoy MW, Alexander ME. 2020. Influence of intra- and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecol. Evol. 10 , 5946–5962. (10.1002/ece3.6332) PubMed DOI PMC

Bideault A, Loreau M, Gravel D. 2019. Temperature modifies consumer-resource interaction strength through its effects on biological rates and body mass. Front. Ecol. Evol. 7 , 45. (10.3389/fevo.2019.00045) DOI

Kozlowski J, Czarnoleski M, Danko M. 2004. Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr. Comp. Biol. 44 , 480–493. (10.1093/icb/44.6.480) PubMed DOI

Kratina P, Rosenbaum B, Gallo B, Horas EL, O’Gorman EJ. 2022. The combined effects of warming and body size on the stability of predator-prey interactions. Front. Ecol. Evol. 9 . (10.3389/fevo.2021.772078) DOI

Daugaard U, Petchey OL, Pennekamp F. 2019. Warming can destabilize predator–prey interactions by shifting the functional response from type III to type II. J. Anim. Ecol. 88 , 1575–1586. (10.1111/1365-2656.13053) PubMed DOI

Ohlberger J, Edeline E, Vøllestad LA, Stenseth NC, Claessen D. 2011. Temperature-driven regime shifts in the dynamics of size-structured populations. Am. Nat. 177 , 211–223. (10.1086/657925) PubMed DOI

Gårdmark A, Huss M. 2020. Individual variation and interactions explain food web responses to global warming. Phil. Trans. R. Soc. B 375 , 20190449. (10.1098/rstb.2019.0449) PubMed DOI PMC

Gilbert B, et al. . 2014. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17 , 902–914. (10.1111/ele.12307) PubMed DOI

DeLong JP, et al. . 2015. The body size dependence of trophic cascades. Am. Nat. 185 , 354–366. (10.1086/679735) PubMed DOI

Polazzo F, Marina TI, Crettaz-Minaglia M, Rico A. 2022. Food web rewiring drives long-term compositional differences and late-disturbance interactions at the community level. Proc. Natl Acad. Sci. USA 119 , e2117364119. (10.1073/pnas.2117364119) PubMed DOI PMC

Raffard A, Cucherousset J, Montoya JM, Richard M, Acoca-Pidolle S, Poésy C, Garreau A, Santoul F, Blanchet S. 2021. Intraspecific diversity loss in a predator species alters prey community structure and ecosystem functions. PLoS Biol. 19 , e3001145. (10.1371/journal.pbio.3001145) PubMed DOI PMC

Leclerc C, et al. . 2023. Temperature, productivity, and habitat characteristics collectively drive lake food web structure. Glob. Chang. Biol. 29 , 2450–2465. (10.1111/gcb.16642) PubMed DOI

Verberk WC, Buchwalter DB, Kefford BJ. 2020. Energetics as a lens to understanding aquatic insect’s responses to changing temperature, dissolved oxygen and salinity regimes. Curr. Opin. Insect Sci. 41 , 46–53. (10.1016/j.cois.2020.06.001) PubMed DOI

Leiva FP, Calosi P, Verberk WCEP. 2019. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Phil. Trans. R. Soc. B 374 , 20190035. (10.1098/rstb.2019.0035) PubMed DOI PMC

Gergs A, Gabsi F, Zenker A, Preuss TG. 2016. Demographic toxicokinetic–toxicodynamic modeling of lethal effects. Environ. Sci. Technol. 50 , 6017–6024. (10.1021/acs.est.6b01113) PubMed DOI

Huang A, Roessink I, van den Brink NW, van den Brink PJ. 2022. Size- and sex-related sensitivity differences of aquatic crustaceans to imidacloprid. Ecotoxicol. Environ. Saf. 242 , 113917. (10.1016/j.ecoenv.2022.113917) PubMed DOI

Buchwalter DB, Cain DJ, Martin CA, Xie L, Luoma SN, Garland T. 2008. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proc. Natl Acad. Sci. USA 105 , 8321–8326. (10.1073/pnas.0801686105) PubMed DOI PMC

Rubach MN, Baird DJ, Boerwinkel MC, Maund SJ, Roessink I, Van den Brink PJ. 2012. Species traits as predictors for intrinsic sensitivity of aquatic Invertebrates to the insecticide chlorpyrifos. Ecotoxicology 21 , 2088–2101. (10.1007/s10646-012-0962-8) PubMed DOI PMC

Zuo Y, Southard M, Xu Q, Zhang G, Skibinski E, Moon N, Gan L, Chen Y, Jiang L. 2024. Cell size-dependent species sensitivity to nanoparticles underlies changes in phytoplankton diversity and productivity. Glob. Chang. Biol. 30 , e17049. (10.1111/gcb.17049) PubMed DOI

Nilsson GE, Ostlund-Nilsson S. 2008. Does size matter for hypoxia tolerance in fish? Biol. Rev. 83 , 173–189. (10.1111/j.1469-185X.2008.00038.x) PubMed DOI

Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. 2022. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature‐dependent manner. Glob. Chang. Biol. 28 , 5695–5707. (10.1111/gcb.16319) PubMed DOI PMC

Peralta-Maraver I, Rezende EL. 2021. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11 , 58–63. (10.1038/s41558-020-00938-y) DOI

Buckley LB. 2021. Body size shapes thermal stress. Nat. Clim. Change 11 , 5–6. (10.1038/s41558-020-00948-w) DOI

Brans KI, Jansen M, Vanoverbeke J, Tüzün N, Stoks R, De Meester L. 2017. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Chang. Biol. 23 , 5218–5227. (10.1111/gcb.13784) PubMed DOI

Baudier KM, Mudd AE, Erickson SC, O’Donnell S. 2015. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84 , 1322–1330. (10.1111/1365-2656.12388) PubMed DOI

Blanckenhorn WU. 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111 , 977–1016. (10.1111/j.1439-0310.2005.01147.x) DOI

Uszko W, Huss M, Gårdmark A. 2022. Smaller species but larger stages: warming effects on inter‐ and intraspecific community size structure. Ecology 103 , e3699. (10.1002/ecy.3699) PubMed DOI PMC

Lindmark M, Huss M, Ohlberger J, Gårdmark A, Adler F. 2018. Temperature‐dependent body size effects determine population responses to climate warming. Ecol. Lett. 21 , 181–189. (10.1111/ele.12880) PubMed DOI

Reuman DC, Holt RD, Yvon-Durocher G. 2014. A metabolic perspective on competition and body size reductions with warming. J. Anim. Ecol. 83 , 59–69. (10.1111/1365-2656.12064) PubMed DOI

Thunell V, Lindmark M, Huss M, Gårdmark A. 2021. Effects of warming on intraguild predator communities with ontogenetic diet shifts. Am. Nat. 198 , 706–718. (10.1086/716927) PubMed DOI

Lindmark M, Ohlberger J, Huss M, Gårdmark A. 2019. Size-based ecological interactions drive food web responses to climate warming. Ecol. Lett. 22 , 778–786. (10.1111/ele.13235) PubMed DOI PMC

Gergs A, Zenker A, Grimm V, Preuss TG. 2013. Chemical and natural stressors combined: from cryptic effects to population extinction. Sci. Rep. 3 , 1–8. (10.1038/srep02036) PubMed DOI PMC

Rossberg AG, Gaedke U, Kratina P. 2019. Dome patterns in pelagic size spectra reveal strong trophic cascades. Nat. Commun. 10 , 4396. (10.1038/s41467-019-12289-0) PubMed DOI PMC

Hall R, Koch BJ, Marshall MC, Taylor BW. How body size mediates the role of animals in nutrient cycling in aquatic ecosystems. In Body size: the structure and function of aquatic ecosystems (eds Hildrew AG, Raffaelli DG, Edmonds-Brown R), pp. 286–305. Cambridge, UK: Cambridge University Press. (10.1017/CBO9780511611223) DOI

Gebert F, Steffan-Dewenter I, Kronbach P, Peters MK. 2022. The role of diversity, body size and climate in dung removal: a correlative and experimental approach. J. Anim. Ecol. 91 , 2181–2191. (10.1111/1365-2656.13798) PubMed DOI

Theodorou P, Baltz LM, Paxton RJ, Soro A. 2021. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 14 , 53–68. (10.1111/eva.13087) PubMed DOI PMC

Vangansbeke D, Duarte MV, Gobin B, Tirry L, Wäckers F, De Clercq P. 2020. Cold‐born killers: exploiting temperature–size rule enhances predation capacity of a predatory mite. Pest Manag. Sci. 76 , 1841–1846. (10.1002/ps.5713) PubMed DOI

Lindmark M, Audzijonyte A, Blanchard JL, Gårdmark A. 2022. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. Glob. Chang. Biol. 28 , 6239–6253. (10.1111/gcb.16341) PubMed DOI PMC

Glazier DS. 2005. Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals. Biol. Rev. 80 , 611–662. (10.1017/S1464793105006834) PubMed DOI

Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413 , 591–596. (10.1038/35098000) PubMed DOI

Gårdmark A, Casini M, Huss M, van Leeuwen A, Hjelm J, Persson L, de Roos AM. 2015. Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory. Phil. Trans. R. Soc. B 370 , 20130262. (10.1098/rstb.2013.0262) DOI

Dijoux S, Boukal DS. 2021. Community structure and collapses in multichannel food webs: role of consumer body sizes and Mesohabitat productivities. Ecol. Lett. 24 , 1607–1618. (10.1111/ele.13772) PubMed DOI

Glazier DS. 2022. Variable metabolic scaling breaks the law: from ‘Newtonian’ to ‘Darwinian’ approaches. Proc. R. Soc. B 289 , 20221605. (10.1098/rspb.2022.1605) PubMed DOI PMC

Harrison JF, et al. . 2022. White paper: an integrated perspective on the causes of hypometric metabolic scaling in animals. Integr. Comp. Biol. 62 , 1395–1418. (10.1093/icb/icac136) PubMed DOI PMC

Alster CJ, Weller ZD, von Fischer JC. 2018. A meta-analysis of temperature sensitivity as a microbial trait. Glob. Chang. Biol. 24 , 4211–4224. (10.1111/gcb.14342) PubMed DOI

Dinh KV, Konestabo HS, Borgå K, Hylland K, Macaulay SJ, Jackson MC, Verheyen J, Stoks R. 2022. Interactive effects of warming and pollutants on marine and freshwater invertebrates. Curr. Pollut. Rep. 8 , 341–359. (10.1007/s40726-022-00245-4) DOI

Streit RP, Bellwood DR. 2023. To harness traits for ecology, let’s abandon ‘functionality. Trends Ecol. Evol. 38 , 402–411. (10.1016/j.tree.2022.11.009) PubMed DOI

Sentis A, Simon B, Boukal D, Stoks R. 2024. Data from: Ecological consequences of body size reduction under warming. Figshare. (10.6084/m9.figshare.c.7403398) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace