Linking scaling laws across eukaryotes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
666971
European Research Council - International
682602
European Research Council - International
PubMed
31591216
PubMed Central
PMC6815163
DOI
10.1073/pnas.1900492116
PII: 1900492116
Knihovny.cz E-zdroje
- Klíčová slova
- biological scaling, macroecology, metabolic theory,
- MeSH
- biologické modely * MeSH
- energetický metabolismus fyziologie MeSH
- Eukaryota fyziologie MeSH
- hustota populace MeSH
- mortalita MeSH
- růst a vývoj fyziologie MeSH
- velikost těla fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.
Department of Earth and Planetary Sciences McGill University Montreal QC H3A 0G4 Canada
Department of Ecology and Evolutionary Biology Princeton University Princeton NJ 08544
Department of Ecology and Evolutionary Biology Princeton University Princeton NJ 08544;
Department of Ecology Faculty of Science Charles University 128 44 Praha Czech Republic
Zobrazit více v PubMed
Peters R. H., The Ecological Implications of Body Size (Cambridge Univ Press, ed. 1, 1983).
Brown J. H., Gillooly J. F., Allen A. P., Savage V. M., West G. B., Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
West G. B., Brown J. H., Enquist B. J., A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997). PubMed
Makarieva A. M., Gorshkov V. G., Li B. L., Energetics of the smallest: Do bacteria breathe at the same rate as whales? Proc. Biol. Sci. 272, 2219–2224 (2005). PubMed PMC
Makarieva A. M., et al. , Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. U.S.A. 105, 16994–16999 (2008). PubMed PMC
White C. R., Phillips N. F., Seymour R. S., The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127 (2006). PubMed PMC
Savage V. M., et al. , The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).
Glazier D. S., Beyond the “3/4-power law”: Variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. Camb. Philos. Soc. 80, 611–662 (2005). PubMed
Glazier D. S., Is metabolic rate a universal “pacemaker” for biological processes? Biol. Rev. Camb. Philos. Soc. 90, 377–407 (2015). PubMed
Damuth J., Interspecific allometry of population density in mammals and other animals: The independence of body mass and population energy-use. Biol. J. Linn. Soc. Lond. 31, 193–246 (1987).
Belgrano A., Allen A. P., Enquist B. J., Gillooly J. F., Allometric scaling of maximum population density: A common rule for marine phytoplankton and terrestrial plants. Ecol. Lett. 5, 611–613 (2002).
Nee S., Read A. F., Greenwood J. J., Harvey P. H., The relationship between abundance and body size in British birds. Nature 351, 312–313 (1991).
Hechinger R. F., Lafferty K. D., Dobson A. P., Brown J. H., Kuris A. M., A common scaling rule for abundance, energetics, and production of parasitic and free-living species. Science 333, 445–448 (2011). PubMed PMC
Case T. J., On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53, 243–282 (1978). PubMed
Ernest S. K. M., et al. , Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).
Hatton I. A., et al. , The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015). PubMed
Brown J. H., Hall C. A. S., Sibly R. M., Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262–268 (2018). PubMed
West G. B., Brown J. H., Enquist B. J., A general model for ontogenetic growth. Nature 413, 628–631 (2001). PubMed
Tacutu R., et al. , Human ageing genomic resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013). PubMed PMC
McCoy M. W., Gillooly J. F., Predicting natural mortality rates of plants and animals. Ecol. Lett. 11, 710–716 (2008). PubMed
Kleiber M., Body size and metabolism. Hilgardia 6, 315–353 (1932).
Glazier D. S., et al. , Ecological effects on metabolic scaling: Amphipod responses to fish predators in freshwater springs. Ecol. Monogr. 81, 599–618 (2011).
Riisgard H. U., No foundation of a “3/4 power scaling law”for respiration in biology. Ecol. Lett. 1, 71–73 (1998).
Banavar J. R., et al. , A general basis for quarter-power scaling in animals. Proc. Natl. Acad. Sci. U.S.A. 107, 15816–15820 (2010). PubMed PMC
Kooijman S. A. L. M., Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ Press, 2000).
Hou C., et al. , Energy uptake and allocation during ontogeny. Science 322, 736–739 (2008). PubMed PMC
Wieser W., Cost of growth in cells and organisms: General rules and comparative aspects. Biol. Rev. Camb. Philos. Soc. 69, 1–33 (1994). PubMed
Clarke A., Energy flow in growth and production. Trends Ecol. Evol. 34, 502–509 (2019). PubMed
Speakman J. R., Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730 (2005). PubMed
Czarnołeski M., et al. , Scaling of metabolism in Helix aspersa snails: Changes through ontogeny and response to selection for increased size. J. Exp. Biol. 211, 391–400 (2008). PubMed
Ricklefs R. E., Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al.’s model. Funct. Ecol. 17, 384–393 (2003).
Parry G. D., The influence of the cost of growth on ectotherm metabolism. J. Theor. Biol. 101, 453–477 (1983). PubMed
Charnov E. L., Warne R., Moses M., Lifetime reproductive effort. Am. Nat. 170, E129–E142 (2007). PubMed
Von Bertalanffy L., Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957). PubMed
Weibel E. R., Bacigalupe L. D., Schmitt B., Hoppeler H., Allometric scaling of maximal metabolic rate in mammals: Muscle aerobic capacity as determinant factor. Respir. Physiol. Neurobiol. 140, 115–132 (2004). PubMed
Geiser F., Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004). PubMed
Vander Heiden M. G., Cantley L. C., Thompson C. B., Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009). PubMed PMC
Gaillard J.-M., et al. , An analysis of demographic tactics in birds and mammals. Oikos 56, 59–76 (1989).
Ecological consequences of body size reduction under warming