Linking scaling laws across eukaryotes

. 2019 Oct 22 ; 116 (43) : 21616-21622. [epub] 20191007

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid31591216

Grantová podpora
666971 European Research Council - International
682602 European Research Council - International

Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.

Zobrazit více v PubMed

Peters R. H., The Ecological Implications of Body Size (Cambridge Univ Press, ed. 1, 1983).

Brown J. H., Gillooly J. F., Allen A. P., Savage V. M., West G. B., Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

West G. B., Brown J. H., Enquist B. J., A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997). PubMed

Makarieva A. M., Gorshkov V. G., Li B. L., Energetics of the smallest: Do bacteria breathe at the same rate as whales? Proc. Biol. Sci. 272, 2219–2224 (2005). PubMed PMC

Makarieva A. M., et al. , Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. U.S.A. 105, 16994–16999 (2008). PubMed PMC

White C. R., Phillips N. F., Seymour R. S., The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127 (2006). PubMed PMC

Savage V. M., et al. , The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).

Glazier D. S., Beyond the “3/4-power law”: Variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. Camb. Philos. Soc. 80, 611–662 (2005). PubMed

Glazier D. S., Is metabolic rate a universal “pacemaker” for biological processes? Biol. Rev. Camb. Philos. Soc. 90, 377–407 (2015). PubMed

Damuth J., Interspecific allometry of population density in mammals and other animals: The independence of body mass and population energy-use. Biol. J. Linn. Soc. Lond. 31, 193–246 (1987).

Belgrano A., Allen A. P., Enquist B. J., Gillooly J. F., Allometric scaling of maximum population density: A common rule for marine phytoplankton and terrestrial plants. Ecol. Lett. 5, 611–613 (2002).

Nee S., Read A. F., Greenwood J. J., Harvey P. H., The relationship between abundance and body size in British birds. Nature 351, 312–313 (1991).

Hechinger R. F., Lafferty K. D., Dobson A. P., Brown J. H., Kuris A. M., A common scaling rule for abundance, energetics, and production of parasitic and free-living species. Science 333, 445–448 (2011). PubMed PMC

Case T. J., On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53, 243–282 (1978). PubMed

Ernest S. K. M., et al. , Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).

Hatton I. A., et al. , The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015). PubMed

Brown J. H., Hall C. A. S., Sibly R. M., Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262–268 (2018). PubMed

West G. B., Brown J. H., Enquist B. J., A general model for ontogenetic growth. Nature 413, 628–631 (2001). PubMed

Tacutu R., et al. , Human ageing genomic resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013). PubMed PMC

McCoy M. W., Gillooly J. F., Predicting natural mortality rates of plants and animals. Ecol. Lett. 11, 710–716 (2008). PubMed

Kleiber M., Body size and metabolism. Hilgardia 6, 315–353 (1932).

Glazier D. S., et al. , Ecological effects on metabolic scaling: Amphipod responses to fish predators in freshwater springs. Ecol. Monogr. 81, 599–618 (2011).

Riisgard H. U., No foundation of a “3/4 power scaling law”for respiration in biology. Ecol. Lett. 1, 71–73 (1998).

Banavar J. R., et al. , A general basis for quarter-power scaling in animals. Proc. Natl. Acad. Sci. U.S.A. 107, 15816–15820 (2010). PubMed PMC

Kooijman S. A. L. M., Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ Press, 2000).

Hou C., et al. , Energy uptake and allocation during ontogeny. Science 322, 736–739 (2008). PubMed PMC

Wieser W., Cost of growth in cells and organisms: General rules and comparative aspects. Biol. Rev. Camb. Philos. Soc. 69, 1–33 (1994). PubMed

Clarke A., Energy flow in growth and production. Trends Ecol. Evol. 34, 502–509 (2019). PubMed

Speakman J. R., Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730 (2005). PubMed

Czarnołeski M., et al. , Scaling of metabolism in Helix aspersa snails: Changes through ontogeny and response to selection for increased size. J. Exp. Biol. 211, 391–400 (2008). PubMed

Ricklefs R. E., Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al.’s model. Funct. Ecol. 17, 384–393 (2003).

Parry G. D., The influence of the cost of growth on ectotherm metabolism. J. Theor. Biol. 101, 453–477 (1983). PubMed

Charnov E. L., Warne R., Moses M., Lifetime reproductive effort. Am. Nat. 170, E129–E142 (2007). PubMed

Von Bertalanffy L., Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957). PubMed

Weibel E. R., Bacigalupe L. D., Schmitt B., Hoppeler H., Allometric scaling of maximal metabolic rate in mammals: Muscle aerobic capacity as determinant factor. Respir. Physiol. Neurobiol. 140, 115–132 (2004). PubMed

Geiser F., Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004). PubMed

Vander Heiden M. G., Cantley L. C., Thompson C. B., Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009). PubMed PMC

Gaillard J.-M., et al. , An analysis of demographic tactics in birds and mammals. Oikos 56, 59–76 (1989).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...