Total Synthesis of Ganoapplanin Enabled by a Radical Addition/Aldol Reaction Cascade

. 2024 Aug 21 ; 146 (33) : 22937-22942. [epub] 20240807

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39110664

Grantová podpora
101000060 European Research Council - International
P 33894 Austrian Science Fund FWF - Austria

The total synthesis of the Ganoderma meroterpenoid ganoapplanin, an inhibitor of T-type voltage-gated calcium channels, is reported. Our synthetic approach is based on the convergent coupling of a readily available aromatic polyketide scaffold with a bicyclic terpenoid fragment. The three contiguous stereocenters of the terpenoid fragment, two of which are quaternary, were constructed by a diastereoselective, titanium-mediated iodolactonization. For the fusion of the two fragments and to simultaneously install the crucial biaryl bond, we devised a highly effective two-component coupling strategy. This event involves an intramolecular 6-exo-trig radical addition of a quinone monoacetal followed by an intermolecular aldol reaction. A strategic late-stage oxidation sequence allowed the selective installation of the remaining oxygen functionalities and the introduction of the characteristic spiro bisacetal structure of ganoapplanin.

Zobrazit více v PubMed

Peng X.; Qiu M. Meroterpenoids from Ganoderma Species: A Review of Last Five Years. Nat. Prod. Bioprospect. 2018, 8 (3), 137–149. 10.1007/s13659-018-0164-z. PubMed DOI PMC

Wang X.-F.; Yan Y.-M.; Wang X.-L.; Ma X.-J.; Fu X.-Y.; Cheng Y.-X. Two New Compounds from Ganoderma Lucidum. Journal of Asian Natural Products Research 2015, 17 (4), 329–332. 10.1080/10286020.2014.960858. PubMed DOI

Mothana R. A. A.; Jansen R.; Jülich W.-D.; Lindequist U. Ganomycins A and B, New Antimicrobial Farnesyl Hydroquinones from the Basidiomycete Ganoderma Pfeifferi. J. Nat. Prod. 2000, 63 (3), 416–418. 10.1021/np990381y. PubMed DOI

Dou M.; Di L.; Zhou L.-L.; Yan Y.-M.; Wang X.-L.; Zhou F.-J.; Yang Z.-L.; Li R.-T.; Hou F.-F.; Cheng Y.-X. Cochlearols A and B, Polycyclic Meroterpenoids from the Fungus Ganoderma Cochlear That Have Renoprotective Activities. Org. Lett. 2014, 16 (23), 6064–6067. 10.1021/ol502806j. PubMed DOI

Luo Q.; Di L.; Yang X.-H.; Cheng Y.-X. Applanatumols A and B, Meroterpenoids with Unprecedented Skeletons from Ganoderma Applanatum. RSC Adv. 2016, 6 (51), 45963–45967. 10.1039/C6RA05148K. DOI

Zhang J.-J.; Qin F.-Y.; Meng X.-H.; Yan Y.-M.; Cheng Y.-X. Renoprotective Ganodermaones A and B with Rearranged Meroterpenoid Carbon Skelotons from Ganoderma Fungi. Bioorganic Chemistry 2020, 100, 103930.10.1016/j.bioorg.2020.103930. PubMed DOI

Luo Q.; Di L.; Dai W.-F.; Lu Q.; Yan Y.-M.; Yang Z.-L.; Li R.-T.; Cheng Y.-X. Applanatumin A, a New Dimeric Meroterpenoid from Ganoderma Applanatum That Displays Potent Antifibrotic Activity. Org. Lett. 2015, 17 (5), 1110–1113. 10.1021/ol503610b. PubMed DOI

Li L.; Li H.; Peng X.-R.; Hou B.; Yu M.-Y.; Dong J.-R.; Li X.-N.; Zhou L.; Yang J.; Qiu M.-H. (±)-Ganoapplanin, a Pair of Polycyclic Meroterpenoid Enantiomers from Ganoderma Applanatum. Org. Lett. 2016, 18 (23), 6078–6081. 10.1021/acs.orglett.6b03064. PubMed DOI

Kawamoto Y.; Ito H. Total Synthesis of Ganoderma Meroterpenoids – Progresses since 2014. Asian J. Org. Chem. 2024, 13, e20230063310.1002/ajoc.202300633. DOI

Šimek M.; Bártová K.; Issad S.; Hájek M.; Císařová I.; Jahn U. Unified Total Synthesis of Diverse Meroterpenoids from Ganoderma Applanatum. Org. Lett. 2022, 24 (25), 4552–4556. 10.1021/acs.orglett.2c01633. PubMed DOI

Mashiko T.; Shingai Y.; Sakai J.; Kamo S.; Adachi S.; Matsuzawa A.; Sugita K. Total Synthesis of Cochlearol B via Intramolecular [2 + 2] Photocycloaddition. Angew. Chem. Int. Ed 2021, 60 (46), 24484–24487. 10.1002/anie.202110556. PubMed DOI

Mashiko T.; Shingai Y.; Sakai J.; Adachi S.; Matsuzawa A.; Kamo S.; Sugita K. Enantioselective Total Syntheses of (+)-Ganocin A and (−)-Cochlearol B. Org. Lett. 2023, 25 (46), 8382–8386. 10.1021/acs.orglett.3c03572. PubMed DOI

Richardson A. D.; Vogel T. R.; Traficante E. F.; Glover K. J.; Schindler C. S. Total Synthesis of (+)-Cochlearol B by an Approach Based on a Catellani Reaction and Visible-Light-Enabled [2 + 2] Cycloaddition. Angew. Chem. Int. Ed 2022, 61 (31), e20220121310.1002/anie.202201213. PubMed DOI PMC

Zhou Q.; Ma X.; Qiao J.; He W.; Jiang M.; Shao H.; Zhao Y. Total Synthesis of Ganoderma Meroterpenoids Cochlearol B and Its Congeners Driven by Structural Similarity and Biological Homology. Chem. Eur. J. 2024, 30 (17), e20240008410.1002/chem.202400084. PubMed DOI

Liu Y.-L.; Deng T.; Sui H.-L.; Zhou M.; Qin H.-B. Total Synthesis of (±)-Applanatumol B. Tetrahedron Lett. 2023, 124, 154584.10.1016/j.tetlet.2023.154584. DOI

Uchida K.; Kawamoto Y.; Kobayashi T.; Ito H. Total Synthesis of Applanatumol B. Org. Lett. 2019, 21 (16), 6199–6201. 10.1021/acs.orglett.9b01901. PubMed DOI

Zhang W.; Xiao D.; Wang B. A Concise Total Synthesis of Cochlearoid B. Org. Biomol. Chem. 2018, 16 (18), 3358–3361. 10.1039/C8OB00615F. PubMed DOI

Shao H.; Gao X.; Wang Z.; Gao Z.; Zhao Y. Divergent Biomimetic Total Syntheses of Ganocins A–C, Ganocochlearins C and D, and Cochlearol T. Angew. Chem. Int. Ed 2020, 59 (19), 7419–7424. 10.1002/anie.202000677. PubMed DOI

Zaichick S. V.; McGrath K. M.; Caraveo G. The Role of Ca2+ Signaling in Parkinson’s Disease. Disease Models & Mechanisms 2017, 10 (5), 519–535. 10.1242/dmm.028738. PubMed DOI PMC

Rajakulendran S.; Hanna M. G. The Role of Calcium Channels in Epilepsy. Cold Spring Harb Perspect Med. 2016, 6 (1), a022723.10.1101/cshperspect.a022723. PubMed DOI PMC

Unzner T. A.; Grossmann A. S.; Magauer T. Rapid Access to Orthogonally Functionalized Naphthalenes: Application to the Total Synthesis of the Anticancer Agent Chartarin. Angew. Chem. Int. Ed 2016, 55 (33), 9763–9767. 10.1002/anie.201605071. PubMed DOI

Feierfeil J.; Magauer T. De Novo Synthesis of Benzannelated Heterocycles. Chem. Eur. J. 2018, 24 (6), 1455–1458. 10.1002/chem.201705662. PubMed DOI PMC

Zamarija I.; Marsh B. J.; Magauer T. Ring Expansion of 1-Indanones to 2-Halo-1-Naphthols as an Entry Point to Gilvocarcin Natural Products. Org. Lett. 2021, 23 (23), 9221–9226. 10.1021/acs.orglett.1c03530. PubMed DOI PMC

Röder L.; Wurst K.; Magauer T. Synthesis of the Tetracyclic Spiro-Naphthoquinone Chartspiroton. Org. Lett. 2024, 26, 3065.10.1021/acs.orglett.4c00695. PubMed DOI PMC

Nozaki K.; Oshima K.; Utimoto K. Facile Routes to Boron Enolates. Et3B-Mediated Reformatsky Type Reaction and Three Components Coupling Reaction of Alkyl Iodides, Methyl Vinyl Ketone, and Carbonyl Compounds. Tetrahedron Lett. 1988, 29 (9), 1041–1044. 10.1016/0040-4039(88)85330-9. DOI

Nagatomo M.; Kamimura D.; Matsui Y.; Masuda K.; Inoue M. Et 3 B-Mediated Two- and Three-Component Coupling Reactions via Radical Decarbonylation of α-Alkoxyacyl Tellurides: Single-Step Construction of Densely Oxygenated Carboskeletons. Chem. Sci. 2015, 6 (5), 2765–2769. 10.1039/C5SC00457H. PubMed DOI PMC

Lu Z.; Zhang X.; Guo Z.; Chen Y.; Mu T.; Li A. Total Synthesis of Aplysiasecosterol A. J. Am. Chem. Soc. 2018, 140 (29), 9211–9218. 10.1021/jacs.8b05070. PubMed DOI

Kitagawa O.; Inoue T.; Taguchi T. Diastereoselective Iodocarbocyclization of 4-Pentenylmalonate Derivatives: Application to Cyclosarkomycin Synthesis. Tetrahedron Lett. 1994, 35 (7), 1059–1062. 10.1016/S0040-4039(00)79965-5. DOI

Inoue T.; Kitagawa O.; Oda Y.; Taguchi T. Diastereoselective Iodocarbocyclization Reaction of 2- or 3-Oxy-4-Pentenylmalonate Derivatives. J. Org. Chem. 1996, 61 (23), 8256–8263. 10.1021/jo961076+. PubMed DOI

Magauer T.; Rode A.; Wurst K. A General Entry to Ganoderma Meroterpenoids: Synthesis of Lingzhiol via Photoredox Catalysis. ChemRxiv May 2022, 10.26434/chemrxiv-2022-svqft. DOI

Morrill C.; Péter Á.; Amalina I.; Pye E.; Crisenza G. E. M.; Kaltsoyannis N.; Procter D. J. Diastereoselective Radical 1,4-Ester Migration: Radical Cyclizations of Acyclic Esters with SmI2. J. Am. Chem. Soc. 2022, 144 (30), 13946–13952. 10.1021/jacs.2c05972. PubMed DOI PMC

Kohara K.; Trowbridge A.; Smith M. A.; Gaunt M. J. Thiol-Mediated α-Amino Radical Formation via Visible-Light-Activated Ion-Pair Charge-Transfer Complexes. J. Am. Chem. Soc. 2021, 143 (46), 19268–19274. 10.1021/jacs.1c09445. PubMed DOI

Wollnitzke P.; Essig S.; Gölz J. P.; Von Schwarzenberg K.; Menche D. Total Synthesis of Ajudazol A by a Modular Oxazole Diversification Strategy. Org. Lett. 2020, 22 (16), 6344–6348. 10.1021/acs.orglett.0c02188. PubMed DOI

Riaz M. T.; Pohorilets I.; Hernandez J. J.; Rios J.; Totah N. I. Preparation of 2-(Trimethylsilyl)Methyl-2-Propen-1-Ol Derivatives by Cobalt Catalyzed Sp2-Sp3 Coupling. Tetrahedron Lett. 2018, 59 (29), 2809–2812. 10.1016/j.tetlet.2018.06.018. DOI

Huang C.; Xiong J.; Guan H.-D.; Wang C.-H.; Lei X.; Hu J.-F. Discovery, Synthesis, Biological Evaluation and Molecular Docking Study of (R)-5-Methylmellein and Its Analogs as Selective Monoamine Oxidase A Inhibitors. Bioorg. Med. Chem. 2019, 27 (10), 2027–2040. 10.1016/j.bmc.2019.03.060. PubMed DOI

Kita Y.; Yata T.; Nishimoto Y.; Chiba K.; Yasuda M. Selective Oxymetalation of Terminal Alkynes via 6- Endo Cyclization: Mechanistic Investigation and Application to the Efficient Synthesis of 4-Substituted Isocoumarins. Chem. Sci. 2018, 9 (28), 6041–6052. 10.1039/C8SC01537F. PubMed DOI PMC

Imbos R.; Minnaard A. J.; Feringa B. L. A Highly Enantioselective Intramolecular Heck Reaction with a Monodentate Ligand. J. Am. Chem. Soc. 2002, 124 (2), 184–185. 10.1021/ja017200a. PubMed DOI

Curran D. P.; McFadden T. R. Understanding Initiation with Triethylboron and Oxygen: The Differences between Low-Oxygen and High-Oxygen Regimes. J. Am. Chem. Soc. 2016, 138 (24), 7741–7752. 10.1021/jacs.6b04014. PubMed DOI

Villar F.; Equey O.; Renaud P. Desymmetrization of 1,4-Dien-3-Ols and Related Compounds via Ueno–Stork Radical Cyclizations. Org. Lett. 2000, 2 (8), 1061–1064. 10.1021/ol005613v. PubMed DOI

Nozaki K.; Oshima K.; Utimoto K. Trialkylborane as an Initiator and Terminator of Free Radical Reactions. Facile Routes to Boron Enolates via α-Carbonyl Radicals and Aldol Reaction of Boron Enolates. Bull. Chem. Soc. Jpn. 1991, 64 (2), 403–409. 10.1246/bcsj.64.403. DOI

Tanaka H.; Oisaki K.; Kanai M. Ligand-Free, Copper-Catalyzed Aerobic Benzylic Sp3 C–H Oxygenation. Synlett 2017, 28 (13), 1576–1580. 10.1055/s-0036-1588969. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...