• This record comes from PubMed

Natural Product Synthesis Enabled by Radical-Polar Crossover Reactions

. 2025 Apr 18 ; 90 (15) : 5083-5092. [epub] 20250404

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article, Review

Grant support
101000060 European Research Council - International

Radical-polar crossover (RPC) chemistry is an emerging field characterized by transformations that involve the coexistence of both radical and ionic species. Since the reactivities of radical and ionic intermediates are orthogonal, applying these two mechanisms in sequence provides significant advantages in the construction of complex molecular architectures. The concept of the RPC approach has become increasingly important in the total synthesis of natural products. This Synopsis presents several examples to showcase recent advancements in this area, including our research on the synthesis of Ganoderma meroterpenoids. In these selected cases, RPC reactions enhance the building of structural complexity and improve overall synthetic efficiency that cannot be achieved by standard synthetic methods.

See more in PubMed

Wiles R. J.; Molander G. A. Photoredox-Mediated Net-Neutral Radical/Polar Crossover Reactions. Isr. J. Chem. 2020, 60 (3–4), 281–293. 10.1002/ijch.201900166. PubMed DOI PMC

Sharma S.; Singh J.; Sharma A. Visible Light Assisted Radical-Polar/Polar-Radical Crossover Reactions in Organic Synthesis. Adv. Synth. Catal. 2021, 363 (13), 3146–3169. 10.1002/adsc.202100205. DOI

Pitzer L.; Schwarz J. L.; Glorius F. Reductive Radical-Polar Crossover: Traditional Electrophiles in Modern Radical Reactions. Chem. Sci. 2019, 10 (36), 8285–8291. 10.1039/C9SC03359A. PubMed DOI PMC

Leifert D.; Studer A. The Persistent Radical Effect in Organic Synthesis. Angew. Chem., Int. Ed. 2020, 59 (1), 74–108. 10.1002/anie.201903726. PubMed DOI

Zhu Z.; Zhang Y.; Li Z.; Shu C. Photoinduced Radical-Polar Crossover Cyclization Reactions. Chem. Catal. 2024, 4 (5), 100945.10.1016/j.checat.2024.100945. DOI

Thomas W. P.; Pronin S. V. New Methods and Strategies in the Synthesis of Terpenoid Natural Products. Acc. Chem. Res. 2021, 54 (6), 1347–1359. 10.1021/acs.accounts.0c00809. PubMed DOI PMC

Müller I. M.; Dirsch V. M.; Rudy A.; López-Antón N.; Pettit G. R.; Vollmar A. M. Cephalostatin 1 Inactivates Bcl-2 by Hyperphosphorylation Independent of M-Phase Arrest and DNA Damage. Mol. Pharmacol. 2005, 67 (5), 1684–1689. 10.1124/mol.104.004234. PubMed DOI

Tlais S. F.; Dudley G. B. On the Proposed Structures and Stereocontrolled Synthesis of the Cephalosporolides. Beilstein J. Org. Chem. 2012, 8 (1), 1287–1292. 10.3762/bjoc.8.146. PubMed DOI PMC

Cortezano-Arellano O.; Quintero L.; Sartillo-Piscil F. Total Synthesis of Cephalosporolide E via a Tandem Radical/Polar Crossover Reaction. The Use of the Radical Cations under Nonoxidative Conditions in Total Synthesis. J. Org. Chem. 2015, 80 (5), 2601–2608. 10.1021/jo502757c. PubMed DOI

Kamimura D.; Urabe D.; Nagatomo M.; Inoue M. Et3B-Mediated Radical-Polar Crossover Reaction for Single-Step Coupling of O, Te-Acetal, α,β-Unsaturated Ketones, and Aldehydes/Ketones. Org. Lett. 2013, 15 (19), 5122–5125. 10.1021/ol402563v. PubMed DOI

Nagatomo M.; Kamimura D.; Matsui Y.; Masuda K.; Inoue M. Et3B-Mediated Two- and Three-Component Coupling Reactions via Radical Decarbonylation of α-Alkoxyacyl Tellurides: Single-Step Construction of Densely Oxygenated Carboskeletons. Chem. Sci. 2015, 6 (5), 2765–2769. 10.1039/C5SC00457H. PubMed DOI PMC

Nagatomo M.; Fujimoto Y.; Masuda K.; Inoue M. Construction of a 6/5/9-Membered Tricyclic Structure of Cladiellins via Radical-Polar Crossover Reaction. J. Antibiot. 2019, 72 (6), 486–489. 10.1038/s41429-019-0150-7. PubMed DOI

Kamimura D.; Nagatomo M.; Urabe D.; Inoue M. Expanding the Scope of Et3B/O2-Mediated Coupling Reactions of O, Te-Acetal. Tetrahedron 2016, 72 (48), 7839–7848. 10.1016/j.tet.2016.04.023. DOI

Yamada Y.; Yoshinaga R.; Matsui Y.; Nagatomo M.; Fujino H.; Inoue M. Et3Al/Light-Promoted Radical-Polar Crossover Reactions of α-Alkoxyacyl Tellurides. J. Org. Chem. 2024, 89 (16), 11701–11706. 10.1021/acs.joc.4c01445. PubMed DOI

Müller N.; Kováč O.; Rode A.; Atzl D.; Magauer T. Total Synthesis of Ganoapplanin Enabled by a Radical Addition/Aldol Reaction Cascade. J. Am. Chem. Soc. 2024, 146 (33), 22937–22942. 10.1021/jacs.4c08291. PubMed DOI PMC

Müller N.; Kováč O.; Rode A.; Atzl D.; Magauer T. Development of a Triethylborane-Mediated Giese Cyclization/Aldol Reaction Cascade for the Total Synthesis of Ganoapplanin. Synlett 2025, 10.1055/a-2501-4079. DOI

Li L.; Li H.; Peng X.-R.; Hou B.; Yu M.-Y.; Dong J.-R.; Li X.-N.; Zhou L.; Yang J.; Qiu M.-H. (±)-Ganoapplanin, a Pair of Polycyclic Meroterpenoid Enantiomers from Ganoderma Applanatum. Org. Lett. 2016, 18 (23), 6078–6081. 10.1021/acs.orglett.6b03064. PubMed DOI

Cao Z.; Sun W.; Zhang J.; Zhuo J.; Yang S.; Song X.; Ma Y.; Lu P.; Han T.; Li C. Total Syntheses of (−)-Macrocalyxoformins A and B and (−)-Ludongnin C. Nat. Commun. 2024, 15 (1), 6052.10.1038/s41467-024-50374-1. PubMed DOI PMC

Crossley S. W. M.; Obradors C.; Martinez R. M.; Shenvi R. A. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. Chem. Rev. 2016, 116 (15), 8912–9000. 10.1021/acs.chemrev.6b00334. PubMed DOI PMC

Shevick S. L.; Wilson C. V.; Kotesova S.; Kim D.; Holland P. L.; Shenvi R. A. Catalytic Hydrogen Atom Transfer to Alkenes: A Roadmap for Metal Hydrides and Radicals. Chem. Sci. 2020, 11 (46), 12401–12422. 10.1039/D0SC04112B. PubMed DOI PMC

George D. T.; Kuenstner E. J.; Pronin S. V. A Concise Approach to Paxilline Indole Diterpenes. J. Am. Chem. Soc. 2015, 137 (49), 15410–15413. 10.1021/jacs.5b11129. PubMed DOI PMC

Vrubliauskas D.; Gross B. M.; Vanderwal C. D. Stereocontrolled Radical Bicyclizations of Oxygenated Precursors Enable Short Syntheses of Oxidized Abietane Diterpenoids. J. Am. Chem. Soc. 2021, 143 (7), 2944–2952. 10.1021/jacs.0c13300. PubMed DOI PMC

Zhao Y.; Hu J.; Chen R.; Xiong F.; Xie H.; Ding H. Divergent Total Syntheses of (−)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J. Am. Chem. Soc. 2022, 144 (6), 2495–2500. 10.1021/jacs.1c13370. PubMed DOI

Zhao X.-H.; Meng L.-L.; Liu X.-T.; Shu P.-F.; Yuan C.; An X.-T.; Jia T.-X.; Yang Q.-Q.; Zhen X.; Fan C.-A. Asymmetric Divergent Synthesis of Ent-Kaurane-, Ent-Atisane-, Ent-Beyerane-, Ent-Trachylobane-, and Ent-Gibberellane-Type Diterpenoids. J. Am. Chem. Soc. 2023, 145 (1), 311–321. 10.1021/jacs.2c09985. PubMed DOI

Godfrey N. A.; Schatz D. J.; Pronin S. V. Twelve-Step Asymmetric Synthesis of (−)-Nodulisporic Acid C. J. Am. Chem. Soc. 2018, 140 (40), 12770–12774. 10.1021/jacs.8b09965. PubMed DOI PMC

Obradors C.; Martinez R. M.; Shenvi R. A. Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. J. Am. Chem. Soc. 2016, 138 (14), 4962–4971. 10.1021/jacs.6b02032. PubMed DOI PMC

Lo J. C.; Yabe Y.; Baran P. S. A Practical and Catalytic Reductive Olefin Coupling. J. Am. Chem. Soc. 2014, 136 (4), 1304–1307. 10.1021/ja4117632. PubMed DOI PMC

Thomas W. P.; Schatz D. J.; George D. T.; Pronin S. V. A Radical-Polar Crossover Annulation To Access Terpenoid Motifs. J. Am. Chem. Soc. 2019, 141 (31), 12246–12250. 10.1021/jacs.9b07346. PubMed DOI PMC

Ang H. H.; Chan K. L.; Mak J. W. In Vitro Antimalarial Activity of Quassinoids from Eurycoma Longifolia against Malaysian Chloroquine-Resistant Plasmodium Falciparum Isolates. Planta Med. 1995, 61, 177–178. 10.1055/s-2006-958042. PubMed DOI

Thomas W. P.; Pronin S. V. A Concise Enantioselective Approach to Quassinoids. J. Am. Chem. Soc. 2022, 144 (1), 118–122. 10.1021/jacs.1c12283. PubMed DOI PMC

Johnson L. K.; Barnes G. L.; Fernandez S. A.; Vanderwal C. D. Hydrogen-Atom-Transfer-Initiated Radical/Polar Crossover Annulation Cascade for Expedient Access to Complex Tetralins. Angew. Chem., Int. Ed. 2023, 62 (21), e20230322810.1002/anie.202303228. PubMed DOI PMC

Vrubliauskas D.; Vanderwal C. D. Cobalt-Catalyzed Hydrogen-Atom Transfer Induces Bicyclizations That Tolerate Electron-Rich and Electron-Deficient Intermediate Alkenes. Angew. Chem., Int. Ed. 2020, 59 (15), 6115–6121. 10.1002/anie.202000252. PubMed DOI PMC

Reddel J. C. T.; Wang W.; Koukounas K.; Thomson R. J. Triflimide-Catalyzed Allylsilane Annulations of Benzylic Alcohols for the Divergent Synthesis of Indanes and Tetralins. Chem. Sci. 2017, 8 (3), 2156–2160. 10.1039/C6SC04762A. PubMed DOI PMC

Gaich T.; Baran P. S. Aiming for the Ideal Synthesis. J. Org. Chem. 2010, 75 (14), 4657–4673. 10.1021/jo1006812. PubMed DOI

Xochicale-Santana L.; Cortezano-Arellano O.; Frontana-Uribe B. A.; Jimenez-Pérez V. M.; Sartillo-Piscil F. The Stereoselective Total Synthesis of the Elusive Cephalosporolide F. J. Org. Chem. 2023, 88 (7), 4880–4885. 10.1021/acs.joc.3c00251. PubMed DOI

Alekseychuk M.; Adrian S.; Heinze R. C.; Heretsch P. Biogenesis-Inspired, Divergent Synthesis of Spirochensilide A, Spirochensilide B, and Abifarine B Employing a Radical-Polar Crossover Rearrangement Strategy. J. Am. Chem. Soc. 2022, 144 (26), 11574–11579. 10.1021/jacs.2c05358. PubMed DOI

Zhao Q.-Q.; Song Q.-Y.; Jiang K.; Li G.-D.; Wei W.-J.; Li Y.; Gao K. Spirochensilides A and B, Two New Rearranged Triterpenoids from Abies Chensiensis. Org. Lett. 2015, 17 (11), 2760–2763. 10.1021/acs.orglett.5b01166. PubMed DOI

Rode A.; Müller N.; Kováč O.; Wurst K.; Magauer T. A General Entry to Ganoderma Meroterpenoids: Synthesis of Applanatumol E, H, and I, Lingzhilactone B, Meroapplanin B, and Lingzhiol. Org. Lett. 2024, 26 (42), 9017–9021. 10.1021/acs.orglett.4c03192. PubMed DOI PMC

Magauer T.; Martin H. J.; Mulzer J. Total Synthesis of the Antibiotic Kendomycin by Macrocyclization Using Photo-Fries Rearrangement and Ring-Closing Metathesis. Angew. Chem., Int. Ed. 2009, 48 (33), 6032–6036. 10.1002/anie.200900522. PubMed DOI

Webb E. W.; Park J. B.; Cole E. L.; Donnelly D. J.; Bonacorsi S. J.; Ewing W. R.; Doyle A. G. Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142 (20), 9493–9500. 10.1021/jacs.0c03125. PubMed DOI

Minagawa K.; Urabe D.; Inoue M. A Three-Component Coupling Approach to the ACE-Ring Substructure of C19-Diterpene Alkaloids. J. Antibiot. 2018, 71 (2), 326–332. 10.1038/ja.2017.69. PubMed DOI

Gentry E. C.; Rono L. J.; Hale M. E.; Matsuura R.; Knowles R. R. Enantioselective Synthesis of Pyrroloindolines via Noncovalent Stabilization of Indole Radical Cations and Applications to the Synthesis of Alkaloid Natural Products. J. Am. Chem. Soc. 2018, 140 (9), 3394–3402. 10.1021/jacs.7b13616. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...