Natural Product Synthesis Enabled by Radical-Polar Crossover Reactions
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article, Review
Grant support
101000060
European Research Council - International
PubMed
40183923
PubMed Central
PMC7617578
DOI
10.1021/acs.joc.5c00306
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Review MeSH
Radical-polar crossover (RPC) chemistry is an emerging field characterized by transformations that involve the coexistence of both radical and ionic species. Since the reactivities of radical and ionic intermediates are orthogonal, applying these two mechanisms in sequence provides significant advantages in the construction of complex molecular architectures. The concept of the RPC approach has become increasingly important in the total synthesis of natural products. This Synopsis presents several examples to showcase recent advancements in this area, including our research on the synthesis of Ganoderma meroterpenoids. In these selected cases, RPC reactions enhance the building of structural complexity and improve overall synthetic efficiency that cannot be achieved by standard synthetic methods.
See more in PubMed
Wiles R. J.; Molander G. A. Photoredox-Mediated Net-Neutral Radical/Polar Crossover Reactions. Isr. J. Chem. 2020, 60 (3–4), 281–293. 10.1002/ijch.201900166. PubMed DOI PMC
Sharma S.; Singh J.; Sharma A. Visible Light Assisted Radical-Polar/Polar-Radical Crossover Reactions in Organic Synthesis. Adv. Synth. Catal. 2021, 363 (13), 3146–3169. 10.1002/adsc.202100205. DOI
Pitzer L.; Schwarz J. L.; Glorius F. Reductive Radical-Polar Crossover: Traditional Electrophiles in Modern Radical Reactions. Chem. Sci. 2019, 10 (36), 8285–8291. 10.1039/C9SC03359A. PubMed DOI PMC
Leifert D.; Studer A. The Persistent Radical Effect in Organic Synthesis. Angew. Chem., Int. Ed. 2020, 59 (1), 74–108. 10.1002/anie.201903726. PubMed DOI
Zhu Z.; Zhang Y.; Li Z.; Shu C. Photoinduced Radical-Polar Crossover Cyclization Reactions. Chem. Catal. 2024, 4 (5), 100945.10.1016/j.checat.2024.100945. DOI
Thomas W. P.; Pronin S. V. New Methods and Strategies in the Synthesis of Terpenoid Natural Products. Acc. Chem. Res. 2021, 54 (6), 1347–1359. 10.1021/acs.accounts.0c00809. PubMed DOI PMC
Müller I. M.; Dirsch V. M.; Rudy A.; López-Antón N.; Pettit G. R.; Vollmar A. M. Cephalostatin 1 Inactivates Bcl-2 by Hyperphosphorylation Independent of M-Phase Arrest and DNA Damage. Mol. Pharmacol. 2005, 67 (5), 1684–1689. 10.1124/mol.104.004234. PubMed DOI
Tlais S. F.; Dudley G. B. On the Proposed Structures and Stereocontrolled Synthesis of the Cephalosporolides. Beilstein J. Org. Chem. 2012, 8 (1), 1287–1292. 10.3762/bjoc.8.146. PubMed DOI PMC
Cortezano-Arellano O.; Quintero L.; Sartillo-Piscil F. Total Synthesis of Cephalosporolide E via a Tandem Radical/Polar Crossover Reaction. The Use of the Radical Cations under Nonoxidative Conditions in Total Synthesis. J. Org. Chem. 2015, 80 (5), 2601–2608. 10.1021/jo502757c. PubMed DOI
Kamimura D.; Urabe D.; Nagatomo M.; Inoue M. Et3B-Mediated Radical-Polar Crossover Reaction for Single-Step Coupling of O, Te-Acetal, α,β-Unsaturated Ketones, and Aldehydes/Ketones. Org. Lett. 2013, 15 (19), 5122–5125. 10.1021/ol402563v. PubMed DOI
Nagatomo M.; Kamimura D.; Matsui Y.; Masuda K.; Inoue M. Et3B-Mediated Two- and Three-Component Coupling Reactions via Radical Decarbonylation of α-Alkoxyacyl Tellurides: Single-Step Construction of Densely Oxygenated Carboskeletons. Chem. Sci. 2015, 6 (5), 2765–2769. 10.1039/C5SC00457H. PubMed DOI PMC
Nagatomo M.; Fujimoto Y.; Masuda K.; Inoue M. Construction of a 6/5/9-Membered Tricyclic Structure of Cladiellins via Radical-Polar Crossover Reaction. J. Antibiot. 2019, 72 (6), 486–489. 10.1038/s41429-019-0150-7. PubMed DOI
Kamimura D.; Nagatomo M.; Urabe D.; Inoue M. Expanding the Scope of Et3B/O2-Mediated Coupling Reactions of O, Te-Acetal. Tetrahedron 2016, 72 (48), 7839–7848. 10.1016/j.tet.2016.04.023. DOI
Yamada Y.; Yoshinaga R.; Matsui Y.; Nagatomo M.; Fujino H.; Inoue M. Et3Al/Light-Promoted Radical-Polar Crossover Reactions of α-Alkoxyacyl Tellurides. J. Org. Chem. 2024, 89 (16), 11701–11706. 10.1021/acs.joc.4c01445. PubMed DOI
Müller N.; Kováč O.; Rode A.; Atzl D.; Magauer T. Total Synthesis of Ganoapplanin Enabled by a Radical Addition/Aldol Reaction Cascade. J. Am. Chem. Soc. 2024, 146 (33), 22937–22942. 10.1021/jacs.4c08291. PubMed DOI PMC
Müller N.; Kováč O.; Rode A.; Atzl D.; Magauer T. Development of a Triethylborane-Mediated Giese Cyclization/Aldol Reaction Cascade for the Total Synthesis of Ganoapplanin. Synlett 2025, 10.1055/a-2501-4079. DOI
Li L.; Li H.; Peng X.-R.; Hou B.; Yu M.-Y.; Dong J.-R.; Li X.-N.; Zhou L.; Yang J.; Qiu M.-H. (±)-Ganoapplanin, a Pair of Polycyclic Meroterpenoid Enantiomers from Ganoderma Applanatum. Org. Lett. 2016, 18 (23), 6078–6081. 10.1021/acs.orglett.6b03064. PubMed DOI
Cao Z.; Sun W.; Zhang J.; Zhuo J.; Yang S.; Song X.; Ma Y.; Lu P.; Han T.; Li C. Total Syntheses of (−)-Macrocalyxoformins A and B and (−)-Ludongnin C. Nat. Commun. 2024, 15 (1), 6052.10.1038/s41467-024-50374-1. PubMed DOI PMC
Crossley S. W. M.; Obradors C.; Martinez R. M.; Shenvi R. A. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. Chem. Rev. 2016, 116 (15), 8912–9000. 10.1021/acs.chemrev.6b00334. PubMed DOI PMC
Shevick S. L.; Wilson C. V.; Kotesova S.; Kim D.; Holland P. L.; Shenvi R. A. Catalytic Hydrogen Atom Transfer to Alkenes: A Roadmap for Metal Hydrides and Radicals. Chem. Sci. 2020, 11 (46), 12401–12422. 10.1039/D0SC04112B. PubMed DOI PMC
George D. T.; Kuenstner E. J.; Pronin S. V. A Concise Approach to Paxilline Indole Diterpenes. J. Am. Chem. Soc. 2015, 137 (49), 15410–15413. 10.1021/jacs.5b11129. PubMed DOI PMC
Vrubliauskas D.; Gross B. M.; Vanderwal C. D. Stereocontrolled Radical Bicyclizations of Oxygenated Precursors Enable Short Syntheses of Oxidized Abietane Diterpenoids. J. Am. Chem. Soc. 2021, 143 (7), 2944–2952. 10.1021/jacs.0c13300. PubMed DOI PMC
Zhao Y.; Hu J.; Chen R.; Xiong F.; Xie H.; Ding H. Divergent Total Syntheses of (−)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J. Am. Chem. Soc. 2022, 144 (6), 2495–2500. 10.1021/jacs.1c13370. PubMed DOI
Zhao X.-H.; Meng L.-L.; Liu X.-T.; Shu P.-F.; Yuan C.; An X.-T.; Jia T.-X.; Yang Q.-Q.; Zhen X.; Fan C.-A. Asymmetric Divergent Synthesis of Ent-Kaurane-, Ent-Atisane-, Ent-Beyerane-, Ent-Trachylobane-, and Ent-Gibberellane-Type Diterpenoids. J. Am. Chem. Soc. 2023, 145 (1), 311–321. 10.1021/jacs.2c09985. PubMed DOI
Godfrey N. A.; Schatz D. J.; Pronin S. V. Twelve-Step Asymmetric Synthesis of (−)-Nodulisporic Acid C. J. Am. Chem. Soc. 2018, 140 (40), 12770–12774. 10.1021/jacs.8b09965. PubMed DOI PMC
Obradors C.; Martinez R. M.; Shenvi R. A. Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. J. Am. Chem. Soc. 2016, 138 (14), 4962–4971. 10.1021/jacs.6b02032. PubMed DOI PMC
Lo J. C.; Yabe Y.; Baran P. S. A Practical and Catalytic Reductive Olefin Coupling. J. Am. Chem. Soc. 2014, 136 (4), 1304–1307. 10.1021/ja4117632. PubMed DOI PMC
Thomas W. P.; Schatz D. J.; George D. T.; Pronin S. V. A Radical-Polar Crossover Annulation To Access Terpenoid Motifs. J. Am. Chem. Soc. 2019, 141 (31), 12246–12250. 10.1021/jacs.9b07346. PubMed DOI PMC
Ang H. H.; Chan K. L.; Mak J. W. In Vitro Antimalarial Activity of Quassinoids from Eurycoma Longifolia against Malaysian Chloroquine-Resistant Plasmodium Falciparum Isolates. Planta Med. 1995, 61, 177–178. 10.1055/s-2006-958042. PubMed DOI
Thomas W. P.; Pronin S. V. A Concise Enantioselective Approach to Quassinoids. J. Am. Chem. Soc. 2022, 144 (1), 118–122. 10.1021/jacs.1c12283. PubMed DOI PMC
Johnson L. K.; Barnes G. L.; Fernandez S. A.; Vanderwal C. D. Hydrogen-Atom-Transfer-Initiated Radical/Polar Crossover Annulation Cascade for Expedient Access to Complex Tetralins. Angew. Chem., Int. Ed. 2023, 62 (21), e20230322810.1002/anie.202303228. PubMed DOI PMC
Vrubliauskas D.; Vanderwal C. D. Cobalt-Catalyzed Hydrogen-Atom Transfer Induces Bicyclizations That Tolerate Electron-Rich and Electron-Deficient Intermediate Alkenes. Angew. Chem., Int. Ed. 2020, 59 (15), 6115–6121. 10.1002/anie.202000252. PubMed DOI PMC
Reddel J. C. T.; Wang W.; Koukounas K.; Thomson R. J. Triflimide-Catalyzed Allylsilane Annulations of Benzylic Alcohols for the Divergent Synthesis of Indanes and Tetralins. Chem. Sci. 2017, 8 (3), 2156–2160. 10.1039/C6SC04762A. PubMed DOI PMC
Gaich T.; Baran P. S. Aiming for the Ideal Synthesis. J. Org. Chem. 2010, 75 (14), 4657–4673. 10.1021/jo1006812. PubMed DOI
Xochicale-Santana L.; Cortezano-Arellano O.; Frontana-Uribe B. A.; Jimenez-Pérez V. M.; Sartillo-Piscil F. The Stereoselective Total Synthesis of the Elusive Cephalosporolide F. J. Org. Chem. 2023, 88 (7), 4880–4885. 10.1021/acs.joc.3c00251. PubMed DOI
Alekseychuk M.; Adrian S.; Heinze R. C.; Heretsch P. Biogenesis-Inspired, Divergent Synthesis of Spirochensilide A, Spirochensilide B, and Abifarine B Employing a Radical-Polar Crossover Rearrangement Strategy. J. Am. Chem. Soc. 2022, 144 (26), 11574–11579. 10.1021/jacs.2c05358. PubMed DOI
Zhao Q.-Q.; Song Q.-Y.; Jiang K.; Li G.-D.; Wei W.-J.; Li Y.; Gao K. Spirochensilides A and B, Two New Rearranged Triterpenoids from Abies Chensiensis. Org. Lett. 2015, 17 (11), 2760–2763. 10.1021/acs.orglett.5b01166. PubMed DOI
Rode A.; Müller N.; Kováč O.; Wurst K.; Magauer T. A General Entry to Ganoderma Meroterpenoids: Synthesis of Applanatumol E, H, and I, Lingzhilactone B, Meroapplanin B, and Lingzhiol. Org. Lett. 2024, 26 (42), 9017–9021. 10.1021/acs.orglett.4c03192. PubMed DOI PMC
Magauer T.; Martin H. J.; Mulzer J. Total Synthesis of the Antibiotic Kendomycin by Macrocyclization Using Photo-Fries Rearrangement and Ring-Closing Metathesis. Angew. Chem., Int. Ed. 2009, 48 (33), 6032–6036. 10.1002/anie.200900522. PubMed DOI
Webb E. W.; Park J. B.; Cole E. L.; Donnelly D. J.; Bonacorsi S. J.; Ewing W. R.; Doyle A. G. Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142 (20), 9493–9500. 10.1021/jacs.0c03125. PubMed DOI
Minagawa K.; Urabe D.; Inoue M. A Three-Component Coupling Approach to the ACE-Ring Substructure of C19-Diterpene Alkaloids. J. Antibiot. 2018, 71 (2), 326–332. 10.1038/ja.2017.69. PubMed DOI
Gentry E. C.; Rono L. J.; Hale M. E.; Matsuura R.; Knowles R. R. Enantioselective Synthesis of Pyrroloindolines via Noncovalent Stabilization of Indole Radical Cations and Applications to the Synthesis of Alkaloid Natural Products. J. Am. Chem. Soc. 2018, 140 (9), 3394–3402. 10.1021/jacs.7b13616. PubMed DOI PMC