Head and neck paraganglioma in Pacak-Zhuang syndrome
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Eunice Kennedy Shriver National Institute of Child Health and Human Development
NCI NIH HHS - United States
PubMed
39821441
PubMed Central
PMC11790058
DOI
10.1093/jncics/pkaf001
PII: 7959535
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- hyperplazie MeSH
- karotická tělíska * patologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mladý dospělý MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádory hlavy a krku * genetika patologie diagnostické zobrazování MeSH
- paragangliom * genetika diagnostické zobrazování patologie MeSH
- počítačová rentgenová tomografie MeSH
- pozitronová emisní tomografie MeSH
- transkripční faktory bHLH * genetika analýza MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endothelial PAS domain-containing protein 1 MeSH Prohlížeč
- transkripční faktory bHLH * MeSH
BACKGROUND: Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model. METHODS: We evaluated a cohort of patients with PZS (n = 9) for HNPGL by positron emission tomography, magnetic resonance imaging, and computed tomography and measured carotid body size compared to literature reference values. Resected tumors were evaluated by histologic sectioning and staining. We evaluated the corresponding mouse model at multiple developmental stages (P8 and adult) for lesions of the head and neck by high resolution ex vivo imaging and performed immunohistochemical staining on histologic sections of the identified lesions. RESULTS: hree patients had imaging consistent with HNPGL, one of which warranted resection and was confirmed on histology. Three additional patients had carotid body enlargement (Z-score > 2.0), and 3 had carotid artery malformations. We found that 9 of 10 adult variant mice had carotid body tumors and 6 of 8 had a paraganglioma on the cranio-caval vein, the murine homologue of the superior vena cava; these were also found in 4 of 5 variant mice at post-natal day 8. These tumors and the one resected from a patient were positive for tyrosine hydroxylase, synaptophysin, and chromogranin A. Brown fat in a resected patient tumor carried the EPAS1 pathogenic variant. CONCLUSIONS: These findings (1) suggest HNPGL as a feature of PZS and (2) show that these pathogenic variants are sufficient to cause the development of these tumors, which we believe represents a continuous spectrum of disease starting from hyperplasia.
Center for Adrenal Endocrine Tumors AKESO Prague 5 Czech Republic
Department of Otolaryngology Georgetown University School of Medicine Washington DC United States
Department of Radiology George Washington University Washington DC United States
Division of Endocrinology Diabetes and Metabolism Tufts Medical Center Boston MA United States
Division of Solid Tumor St Jude Children's Research Hospital Memphis TN United States
General Surgical Pathology Section National Institutes of Health Bethesda MD United States
MedPix® National Library of Medicine Bethesda MD United States
Zobrazit více v PubMed
Därr R, Nambuba J, Del Rivero J, et al. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr Relat Cancer. 2016;23:899-908. PubMed PMC
Pacak K, Jochmanova I, Prodanov T, et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol. 2013;31:1690-1698. PubMed PMC
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399-408. PubMed PMC
Zhuang Z, Yang C, Lorenzo F, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367:922-930. PubMed PMC
Chowdhury R, Leung IKH, Tian Y-M, et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun. 2016;7:12673. PubMed PMC
Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393-402. PubMed
Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. Dev Cell. 2009;17:755-773. PubMed
Scully D, Keane E, Batt E, et al. Hypoxia promotes production of neural crest cells in the embryonic head. Development. 2016;143:1742-1752. PubMed
Niklasson CU, Fredlund E, Monni E, et al. Hypoxia inducible factor-2alpha importance for migration, proliferation, and self-renewal of trunk neural crest cells. Dev Dyn. 2021;250:191-236. PubMed PMC
Richter S, Qiu B, Ghering M, et al. Head/neck paragangliomas: focus on tumor location, mutational status and plasma methoxytyramine. Endocr Relat Cancer. 2022;29:213-224. PubMed PMC
Neumann HPH, Sullivan M, Winter A, et al. Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J Clin Endocrinol Metab. 2011;96:E1279-E1282. PubMed
Boedeker CC, Erlic Z, Richard S, et al. Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2009;94:1938-1944. PubMed PMC
Hussain I, Husain Q, Baredes S, et al. Molecular genetics of paragangliomas of the skull base and head and neck region: implications for medical and surgical management. J Neurosurg. 2014;120:321-330. PubMed
Fielding JW, Hodson EJ, Cheng X, et al. PHD2 inactivation in type I cells drives HIF-2alpha-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J Physiol. 2018;596:4393-4412. PubMed PMC
Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271-275. PubMed
Yu F, White SB, Zhao Q, Lee FS. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A. 2001;98:9630-9635. PubMed PMC
Yang C, Sun MG, Matro J, et al. Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood. 2013;121:2563-2566. PubMed PMC
Wang H, Cui J, Yang C, et al. A transgenic mouse model of Pacak(-)Zhuang syndrome with an Epas1 gain-of-function mutation. Cancers (Basel). 2019;11:667. PubMed PMC
Rosenblum JS, Cappadona AJ, Argersinger DP, et al. Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition. Neurol Genet. 2020;6:e414. PubMed PMC
Nguyen RP, Shah LM, Quigley EP, et al. Carotid body detection on CT angiography. AJNR Am J Neuroradiol. 2011;32:1096-1099. PubMed PMC
Rosenblum JS, Wang H, Dmitriev PM, et al. Developmental vascular malformations in EPAS1 gain-of-function syndrome. JCI Insight. 2021;6. PubMed PMC
Streeter GL. The developmental alterations in the vascular system of the brain of the human embryo. Contrib Embryol. 1918;8:7-38.
Di Franco A, Guasti D, Mazzanti B, et al. Dissecting the origin of inducible brown fat in adult humans through a novel adipose stem cell model from adipose tissue surrounding pheochromocytoma. J Clin Endocrinol Metab. 2014;99:E1903-E1912. PubMed
Lam AK. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours. Endocr Pathol. 2017;28:213-227. PubMed
Mete O, Asa SL, Gill AJ, et al. Overview of the 2022 WHO classification of paragangliomas and pheochromocytomas. Endocr Pathol. 2022;33:90-114. PubMed
Erickson AG, Kameneva P, Adameyko I. The transcriptional portraits of the neural crest at the individual cell level. Semin Cell Dev Biol. 2023;138:68-80. PubMed PMC
Kastriti ME, Kameneva P, Kamenev D, et al. Schwann cell precursors generate the majority of chromaffin cells in Zuckerkandl organ and some sympathetic neurons in paraganglia. Front Mol Neurosci. 2019;12:6. PubMed PMC
Kameneva P, Artemov AV, Kastriti ME, et al. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet. 2021;53:694-706. PubMed PMC
Soldatov R, Kaucka M, Kastriti ME, et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 2019;364:eaas9536. PubMed
Martik ML, Bronner ME. Riding the crest to get a head: neural crest evolution in vertebrates. Nat Rev Neurosci. 2021;22:616-626. PubMed PMC
Abdul Sater Z, Jha A, Hamimi A, et al. Pheochromocytoma and paraganglioma patients with poor survival often show brown adipose tissue activation. J Clin Endocrinol Metab. 2020;105:1176-1185. PubMed PMC
Tarade D, Robinson CM, Lee JE, Ohh M. HIF-2 alpha-pVHL complex reveals broad genotype-phenotype correlations in HIF-2 alpha-driven disease. Nature Commun. 2018;9:3359. PubMed PMC
Hadi M, Chen CC, Whatley M, et al. Brown fat imaging with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patients being evaluated for pheochromocytoma. J Nucl Med. 2007;48:1077-1083. PubMed
Wang R, Gomez Salazar M, Pruñonosa Cervera I, et al. Adipocyte deletion of the oxygen-sensor PHD2 sustains elevated energy expenditure at thermoneutrality. Nat Commun. 2024;15:7483. PubMed PMC
Jochmanova I, Pacak K. Genomic landscape of pheochromocytoma and paraganglioma. Trends Cancer. 2018;4:6-9. PubMed PMC
Koch CA, Mauro D, Walther MM, et al. Pheochromocytoma in von Hippel-Lindau disease: distinct histopathologic phenotype compared to pheochromocytoma in multiple endocrine neoplasia type 2. Endocr Pathol. 2002;13:17-27. PubMed
Terry M, Gupta R, Ravindranathan A, et al. Somatic mosaic SOX10 indel mutations underlie a form of segmental schwannomatosis. Acta Neuropathol. 2023;146:857-860. PubMed PMC
Koch CA, Vortmeyer AO, Zhuang Z, et al. New insights into the genetics of familial chromaffin cell tumors. Ann N Y Acad Sci. 2002;970:11-28. PubMed
Dmitriev PM, Wang H, Rosenblum JS, et al. Vascular changes in the retina and choroid of patients with EPAS1 gain-of-function mutation syndrome. JAMA Ophthalmol. 2020;138:148-155. PubMed PMC
Holzenberger M, Lenzner C, Leneuve P, et al. Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. Nucleic Acids Res. 2000;28:E92. PubMed PMC
Rasband WS. ImageJ. 1997-2018, U.S. National Institutes of Health.