Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-29916A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
29923129
DOI
10.1007/s12223-018-0622-3
PII: 10.1007/s12223-018-0622-3
Knihovny.cz E-zdroje
- MeSH
- antiinfekční látky * MeSH
- bakteriologické techniky MeSH
- biofilmy * MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus růst a vývoj izolace a purifikace virologie MeSH
- mikrobiální viabilita MeSH
- počet mikrobiálních kolonií MeSH
- stafylokokové bakteriofágy fyziologie MeSH
- stafylokokové infekce mikrobiologie MeSH
- Staphylococcus aureus růst a vývoj izolace a purifikace virologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky * MeSH
Staphylococcus aureus may be a highly virulent human pathogen, especially when it is able to form a biofilm, and it is resistant to antibiotic. Infections caused by these bacteria significantly affect morbidity and mortality, primarily in hospitalized patients. Treatment becomes more expensive, more toxic, and prolonged. This is the reason why research on alternative therapies should be one of the main priorities of medicine and biotechnology. A promising alternative treatment approach is bacteriophage therapy. The effect of the anti-staphylococcal bacteriophage preparation Stafal® on biofilm reduction was assessed on nine S. aureus strains using both sonication with subsequent quantification of surviving cells on the catheter surface and evaluation of biofilm reduction in microtiter plates. It was demonstrated that the bacteriophages destroy planktonic cells very effectively. However, to destroy cells embedded in the biofilm effectively requires a concentration at least ten times higher than that provided by the commercial preparation. The catheter disc method (CDM) allowed easier comparison of the effect on planktonic cells and cells in a biofilm than the microtiter plate (MTP) method.
Zobrazit více v PubMed
Am J Rhinol Allergy. 2014 Jan-Feb;28(1):3-11 PubMed
Plast Reconstr Surg. 2013 Feb;131(2):225-34 PubMed
Curr Pharm Biotechnol. 2008 Aug;9(4):261-6 PubMed
Bacteriophage. 2013 Oct 1;3(4):e26825 PubMed
Proteomics. 2007 Jan;7(1):64-72 PubMed
Virology. 1998 Jul 5;246(2):241-52 PubMed
Lett Appl Microbiol. 2012 Apr;54(4):286-91 PubMed
Front Pharmacol. 2015 Sep 07;6:180 PubMed
Clin Orthop Relat Res. 2009 May;467(5):1360-4 PubMed
PLoS One. 2011;6(9):e24418 PubMed
Microbiology. 1998 Nov;144 ( Pt 11):3039-47 PubMed
Zentralbl Bakteriol Orig. 1969 Jul;210(3):377-81 PubMed
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9351-6 PubMed
Biofouling. 2011 Nov;27(10):1087-93 PubMed
J Clin Microbiol. 2003 Dec;41(12):5442-8 PubMed
Microb Biotechnol. 2011 Sep;4(5):643-50 PubMed
APMIS. 2007 Aug;115(8):891-9 PubMed
J Antimicrob Chemother. 1997 Jul;40(1):135-6 PubMed
Zentralbl Bakteriol Orig. 1966 Nov;201(3):321-5 PubMed
Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75 PubMed
J Clin Microbiol. 2000 Mar;38(3):1008-15 PubMed
Adv Virus Res. 2012;83:143-216 PubMed
Appl Environ Microbiol. 2014 Nov;80(21):6694-703 PubMed
Viruses. 2012 May;4(5):663-87 PubMed
J Clin Microbiol. 2005 Aug;43(8):3818-23 PubMed
Appl Environ Microbiol. 2001 Jun;67(6):2746-53 PubMed
Front Microbiol. 2016 Sep 26;7:1515 PubMed
Antimicrob Agents Chemother. 2007 Sep;51(9):3374-7 PubMed
FEMS Microbiol Lett. 2016 Jan;363(2):fnv225 PubMed
FEMS Microbiol Lett. 2004 Mar 12;232(1):1-6 PubMed
Front Microbiol. 2016 Aug 03;7:1209 PubMed
Appl Microbiol Biotechnol. 2010 May;86(5):1439-49 PubMed
Appl Environ Microbiol. 2005 Apr;71(4):1836-42 PubMed
Sci Rep. 2017 Jan 24;7:41259 PubMed