Intact DNA purified from flow-sorted nuclei unlocks the potential of next-generation genome mapping and assembly in Solanum species
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30046519
PubMed Central
PMC6058011
DOI
10.1016/j.mex.2018.03.009
PII: S2215-0161(18)30049-9
Knihovny.cz E-zdroje
- Klíčová slova
- BioNano genome mapping, Flow sorting, Genome finishing, HMW DNA isolation, Nuclei sorting and HMW DNA purification in Solanum,
- Publikační typ
- časopisecké články MeSH
Next-generation genome mapping through nanochannels (Bionano optical mapping) of plant genomes brings genome assemblies to the 'nearly-finished' level for reliable and detailed gene annotations and assessment of structural variations. Despite the recent progress in its development, researchers face the technical challenges of obtaining sufficient high molecular weight (HMW) nuclear DNA due to cell walls which are difficult to disrupt and to the presence of cytoplasmic polyphenols and polysaccharides that co-precipitate or are covalently bound to DNA and might cause oxidation and/or affect the access of nicking enzymes to DNA, preventing downstream applications. Here we describe important improvements for obtaining HMW DNA that we tested on Solanum crops and wild relatives. The methods that we further elaborated and refined focus on •Improving flexibility of using different tissues as source materials, like fast-growing root tips and young leaves from seedlings or in vitro plantlets.•Obtaining nuclei suspensions through either lab homogenizers or by chopping.•Increasing flow sorting efficiency using DAPI (4',6-diamidino-2-phenylindole) and PI (propidium iodide) DNA stains, with different lasers (UV or 488 nm) and sorting platforms such as the FACSAria and FACSVantage flow sorters, thus making it appropriate for more laboratories working on plant genomics. The obtained nuclei are embedded into agarose plugs for processing and isolating uncontaminated HMW DNA, which is a prerequisite for nanochannel-based next-generation optical mapping strategies.
Faculty of Agronomy University of the Republic Montevideo Uruguay
Laboratory of Genetics Wageningen University and Research Wageningen The Netherlands
Zobrazit více v PubMed
Šimková H., Číhalíková J., Vrána J., Lysak M.A., Dolezel J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 2003;46:369–373. http://link.springer.com/article/10.1023/A:1024322001786 DOI
Šafář J., Noa-Carrazana J.J.C., Vrána J., Safár J., Noa-Carrazana J.J.C., Vrána J., Bartos J., Alkhimova O., Sabau X., Simková H., Lheureux F., Caruana M.-L., Dolezel J., Piffanelli P. Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome. 2004;47:1182–1191. PubMed
Jope C., Hirai A., Wildman S. Evidence that the amount of chloroplast DNA exceeds that of nuclear DNA in mature leaves. J. Cell. Biol. 1978;79:631–636. PubMed PMC
Shearer L.A., Anderson L.K., de Jong H., Smit S., Goicoechea J.L., Roe B.a, Hua A., Giovannoni J.J., Stack S.M. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome G3 genes. Genom. Genet. 2014;4:1395–1405. PubMed PMC
Sanseverino W., Hénaff E., Vives C., Pinosio S., Burgos-Paz W., Morgante M., Ramos-Onsins S., Garcia-Mas J., Casacuberta J. Transposon insertion, structural variations and SNPs contribute to the evolution of the melon genome. Mol. Biol. Evol. 2015;32(10):2760–2774. PubMed
Belton J.-M., McCord R.P., Gibcus J.H., Naumova N., Zhan Y., Dekker J. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268–276. PubMed PMC
Putnam N.H., O’Connell B.L., Stites J.C., Rice B.J., Blanchette M., Calef R., Troll C.J., Fields A., Hartley P.D., Sugnet C.W., Haussler D., Rokhsar D.S., Green R.E. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. PubMed PMC
Lam E.T., Hastie A., Lin C., Ehrlich D., Das S.K., Austin M.D., Deshpande P., Cao H., Nagarajan N., Xiao M., Kwok P.-Y. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 2012;30:771–776. PubMed PMC
Cao H., Hastie A.R., Cao D., Lam E.T., Sun Y., Huang H., Liu X., Lin L., Andrews W., Chan S., Huang S., Tong X., Requa M., Anantharaman T., Krogh A., Yang H., Cao H., Xu X. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience. 2014;3:34. PubMed PMC
Xiao M., Phong A., Ha C., Chan T.-F., Cai D., Leung L., Wan E., Kistler A.L., DeRisi J.L., Selvin P.R., Kwok P.-Y. Rapid DNA mapping by fluorescent single molecule detection. Nucleic Acids Res. 2007;35:e16. PubMed PMC
Das S.K., Austin M.D., Akana M.C., Deshpande P., Cao H., Xiao M. Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res. 2010;38:e177. PubMed PMC
Hastie A.R., Dong L., Smith A., Finklestein J., Lam E.T., Huo N., Cao H., Kwok P.-Y., Deal K.R., Dvorak J., Luo M.-C., Gu Y., Xiao M. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS One. 2013;8:e55864. PubMed PMC
Appels R., Nystrom J., Webster H., Keeble-Gagnere G. Discoveries and advances in plant and animal genomics. Funct. Integr. Genom. 2015;15:121–129. PubMed PMC
Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., Zheng Y., Liu W., Sun X., Xu Y., Deng J., Zhang Z., Huang S., Dai S., Mou B., Wang Q., Fei Z., Wang Q. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat. Commun. 2017;8:15275. PubMed PMC
Kaur P., Bayer P.E., Milec Z., Vrána J., Yuan Y., Appels R., Edwards D., Batley J., Nichols P., Erskine W., Doležel J. An advanced reference genome of Trifolium subterraneum L. Reveals genes related to agronomic performance. Plant. Biotechnol. J. 2017;15(8):1034–1046. PubMed PMC
Jiao Y., Peluso P., Shi J., Liang T., Stitzer M.C., Wang B., Campbell M., Stein J.C., Wei X., Chin C.-S., Guill K., Regulski M., Kumari S., Olson A., Gent J., Schneider K.L., Wolfgruber T.K., May M., Springer N., Antoniou E., McCombie R., Presting G.G., McMullen M., Ross-Ibarra J., Dawe R.K., Hastie A., Rank D.R., Ware D. Improved maize reference genome with single-molecule technologies. Nature. 2017 PubMed PMC
Jarvis D.E., Ho Y.S., Lightfoot D.J., Schmöckel S.M., Li B., Borm T.J.A., Ohyanagi H., Mineta K., Michell C.T., Saber N., Kharbatia N.M., Rupper R.R., Sharp A.R., Dally N., Boughton B.A., Woo Y.H., Gao G., Schijlen E.G.W.M., Guo X., Momin A.A., Negrão S., Al-Babili S., Gehring C., Roessner U., Jung C., Murphy K., Arold S.T., Gojobori T., van der Linden C.G., van Loo E.N., Jellen E.N., Maughan P.J., Tester M. The genome of Chenopodium quinoa. Nature. 2017;542:307–312. PubMed
Staňková H., Hastie A.R., Chan S., Vrána J., Tulpová Z., Kubaláková M., Visendi P., Hayashi S., Luo M., Batley J., Edwards D., Doležel J., Šimková H. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol. J. 2016;14:1523–1531. PubMed PMC
Zhou S., Herschleb J., Schwartz D.C. A single molecule system for whole genome analysis. Perspect. Bioanal. 2007;2:265–300. Chapter 9.
Dimalanta E.T., Lim A., Runnheim R., Lamers C., Churas C., Forrest D.K., De Pablo J.J., Graham M.D., Coppersmith S.N., Goldstein S., Schwartz D.C. A microfluidic system for large DNA molecule arrays. Anal. Chem. 2004;76(18):5293–5301. PubMed
Zhou S., Bechner M.C., Place M., Churas C.P., Pape L., a Leong S., Runnheim R., Forrest D.K., Goldstein S., Livny M., Schwartz D.C. Validation of rice genome sequence by optical mapping. BMC Genom. 2007;8:278. PubMed PMC
Zhou S., Wei F., Nguyen J., Bechner M., Potamousis K., Goldstein S., Pape L., Mehan M.R., Churas C., Pasternak S., Forrest D.K., Wise R., Ware D., Wing R.a, Waterman M.S., Livny M., Schwartz D.C. A single molecule scaffold for the maize genome. PLoS Genet. 2009;5:e1000711. PubMed PMC
Young N.D., Debellé F., Oldr oyd G.E.D., Geurts R., Cannon S.B., Udvardi M.K., Benedit o V.a., Mayer K.F.X., Gouzy J., Schoof H., Van de Peer Y., Proost S., Cook D.R., Meyers B.C., Spannagl M., Cheung F., De Mita S., Krishnakumar V., Gundlach H., Zhou S., Mudge J., Bharti A.K., Murray J.D., Naoumkina Ma., Rosen B., Silverstein Ka.T., Tang H., Rombauts S., Zhao P.X., Zhou P., Barbe V., Bardou P., Bechner M., Bellec A., Berger A., Bergès H., Bidwell S., Bisseling T., Choisne N., Coul oux A., Denny R., Deshpande S., Dai X., Doyle J.J., Dudez A.-M., Farmer A.D., Fouteau S., Franken C., Gibelin C., Gish J., Goldstein S., González A.J., Green P.J., Hallab A., Hartog M., Hua A., Humphray S.J., Jeong D.-H., Jing Y., Jöcker A., Kenton S.M., Kim D.-J., Klee K., Lai H., Lang C., Lin S., Macmil S.L., Magdelenat G., Matthews L., McCorrison J., Monaghan E.L., Mun J.-H., Najar F.Z., Nicholson C., Noirot C., O’Bleness M., Paule C.R., oulain J.P., Prion F., Qin B., Qu C., Retzel E.F., Riddle C., Sallet E., Samain S., Samson N., Sanders I., Saurat O., Scarpelli C., Schiex T., Segurens B., Severin A.J., Sherrier D.J., Shi R., Sims S., Singer S.R., Sinharo S., Sterck L., Viollet A., Wang B.-B., Wang K., Wang M., Wang X., Warfsmann J., Weissenbach J., White D.D., White J.D., Wiley G.B., Wincker P., Xing Y., Yang L., Yao Z., Ying F., Zhai J., Zhou L., Zuber A., Dénarié J., Dixon R.a., May G.D., Schwartz D.C., Rogers J., Quétier F., Town C.D., Roe B.A. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480:520–524. PubMed PMC
Tang H., Krishnakumar V., Bidwell S., Rosen B., Chan A., Zhou S., Gentzbittel L., Childs K.L., Yandell M., Gundlach H., Mayer K.F.X., Schwartz D.C., Town C.D. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genom. 2014;15:312. PubMed PMC
Zimin A.V., Puiu D., Luo M.-C., Zhu T., Koren S., Yorke J.A., Dvorak J., Salzberg S. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–792. PubMed PMC
Wink M. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. TAG Theor. Appl. Genet. 1988;75:225–233.
Barghini E., Natali L., Giordani T., Cossu R.M., Scalabrin S., Cattonaro F., Šimková H., Vrána J., Doležel J., Morgante M., Cavallini A. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res. 2015;22:91–100. PubMed PMC
Flow Sorting-Assisted Optical Mapping