LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25428895
PubMed Central
PMC4379980
DOI
10.1093/dnares/dsu042
PII: dsu042
Knihovny.cz E-zdroje
- Klíčová slova
- BAC sequencing, LTR retrotransposons, insertion age, next-generation sequencing, olive,
- MeSH
- celogenomová asociační studie * MeSH
- koncové repetice * MeSH
- mapování chromozomů * MeSH
- Olea genetika MeSH
- retroelementy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy * MeSH
Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR's divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms.
Department of Agricultural Food and Environmental Sciences University of Pisa Pisa 1 56124 Italy
Zobrazit více v PubMed
Stark A.H., Madar Z. Olive oil as a functional food: epidemiology and nutritional approaches. Nutrition Rev. 2002;60:170–6. PubMed
Sarri V., Baldoni L., Porceddu A., et al. Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome. 2006;49:1606–15. PubMed
Besnard G., Baradat P., Bervillé A. Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor. Appl. Genet. 2001;102:251–8.
Loureiro J., Rodriguez E., Costa A., Santos C. Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet. Res. Crop Evol. 2007;54:21–5.
Katsiotis A., Hagidimitriou M., Douka A., Hatzopoulos P. Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome. 1998;41:527–34. PubMed
Bitonti M.B., Cozza R., Chiappetta A., et al. Amount and organization of the heterochromatin in Olea europaea and related species. Heredity. 1999;83:188–95. PubMed
Lorite P., Garcia M.F., Carrillo J.A., Palomeque T. A new repetitive DNA sequence family in the olive (Olea europaea L) Hereditas. 2001;134:73–8. PubMed
Stergiou G., Katsiotis A., Hagidimitriou M., Loukas M. Genomic and chromosomal organization of Ty1-Copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor. Appl. Genet. 2002;104:926–33. PubMed
Natali L., Giordani T., Buti M., Cavallini A. Isolation of Ty1-Copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol. Breed. 2007;19:255–65.
Jiao Y., Leebens-Mack J., Ayyampalayam S., et al. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 2012;13:R3. PubMed PMC
Hawkins J.S., Kim H.R., Nason J.D., Wing R.A., Wendel J.F. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–61. PubMed PMC
Kumar A., Bennetzen J.B. Plant retrotransposons. Ann. Rev. Genet. 1999;33:479–532. PubMed
Beguiristain T., Grandbastien M.A., Puigdomenech P., Casacuberta J.M. Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol. 2001;127:212–21. PubMed PMC
Brunner S., Fengler K., Morgante M., Tingey S., Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell. 2005;17:343–60. PubMed PMC
Paterson A.H., Bowers J.E., Bruggmann R., et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6. PubMed
Buti M., Giordani T., Cattonaro F., et al. Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions. Theor. Appl. Genet. 2011;123:779–91. PubMed
Cossu R.M., Buti M., Giordani T., Natali L., Cavallini A. A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet. Genomes. 2012;8:61–75.
Barghini E., Natali L., Cossu R.M., et al. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol. Evol. 2014;6:776–91. PubMed PMC
SanMiguel P., Gaut B.S., Tikhonov A., et al. The paleontology of intergene retrotransposons of maize. Nat. Genet. 1998;20:43–5. PubMed
Doležel J., Číhalíková J., Lucretti S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta. 1992;188:93–8. PubMed
Šimková H., Číhalíková J., Vrána J., Lysák M.A., Doležel J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 2003;46:369–73.
Šimková H., Šafář J., Kubaláková M., et al. BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J. Biomed. Biotechnol. 2011;20(11):302543. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12.
Simpson J.T., Wong K., Jackman S.D., et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23. PubMed PMC
Xu Z., Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucl. Acids Res. 2007;35:W265–8. PubMed PMC
Sonnhammer E.L., Durbin R. A dot-matriprogram with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–GC10. PubMed
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994;22:4673–80. PubMed PMC
Munoz-Merida A., González-Plaza J.J., Cañada A., et al. De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res. 2013;20:93–108. PubMed PMC
Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986;3:418–26. PubMed
Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999;15:174–5. PubMed
Besnard G., Rubio de Casas R., Christin P.A., Vargas P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann. Bot. 2009;104:143–60. PubMed PMC
Ma J., Bennetzen J.L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. USA. 2004;101:12404–10. PubMed PMC
Jurka J., Kapitonov V.V., Pavlicek A., et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005;110:462–7. PubMed
Gorinsek B., Gubensek F., Kordis D. Evolutionary genomics of chromoviruses in eukaryotes. Mol. Biol. Evol. 2004;21:781–98. PubMed
Nystedt B., Nathaniel R., Street N.R., et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84. PubMed
Gaut B.S. Molecular clocks and nucleotide substitution rates in higher plants. In: Hecht M.K., Macintyre R.J., Clegg M.T., editors. Evolutionary Biology. Vol. 30. New York: Plenum Press; 1998. pp. 93–120.
Huang S., Li R., Zhang Z., et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009;41:1275–81. PubMed
Schnable P.S., Ware D., Fulton R.S., et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5. PubMed
Vitte C., Fustier M.A., Alix K., Tenaillon M.I. The bright side of transposons in crop evolution. Brief. Funct. Genomics. 2014 doi:10.1093/bfgp/elu002. PubMed DOI
Ming R., Hou S., Feng Y., et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) Nature. 2008;452:991–7. PubMed PMC
The French-Italian Public Consortium for Grape Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463–7. PubMed
Neumann P., Navrátilová A., Koblížková A., et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA. 2011;2:4. PubMed PMC
Ma J., Devos K.M., Bennetzen J.L. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 2004;14:860–9. PubMed PMC
Ammiraju J.S., Zuccolo A., Yu Y., et al. Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J. 2007;52:342–51. PubMed
Morse A.M., Peterson D.G., Islam-Faridi M.N., et al. Evolution of genome size and complexity in Pinus. PLoS ONE. 2009;4:e4332. PubMed PMC
Cavallini A., Natali L., Zuccolo A., et al. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor. Appl. Genet. 2010;120:491–508. PubMed
Natali L., Cossu R.M., Barghini E., et al. The repetitive component of the sunflower genome as revealed by different procedures for assembling next generation sequencing reads. BMC Genomics. 2013;14:686. PubMed PMC
Zuccolo A., Sebastian A., Yu Y., et al. Assessing the extent of substitution rate variation of retrotransposon long terminal repeat sequences in Oryza sativa and Oryza glaberrima. Rice. 2010;3:242–50.
Ungerer M.C., Strakosh S.C., Stimpson K.M. Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. BMC Biol. 2009;7:40. PubMed PMC
Vukich M., Schulman A.H., Giordani T., et al. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor. Appl. Genet. 2009;119:1027–38. PubMed
Baucom R.S., Estill J.C., Leebens-Mack J., Bennetzen J.L. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res. 2009;19:243–54. PubMed PMC
Lisch D. Epigenetic regulation of transposable elements in plants. Ann. Rev. Plant Biol. 2009;60:43–66. PubMed
Baucom R.S., Estill J.C., Chaparro C., et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009;5:e1000732. PubMed PMC
Le Rouzic A., Dupas S., Capy P. Genome ecosystem and transposable elements species. Gene. 2007;390:214–20. PubMed
Venner S., Feschotte C., Biemont C. Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet. 2009;25:317–23. PubMed PMC