Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features

. 2020 Mar 27 ; 295 (13) : 4224-4236. [epub] 20200218

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32071085
Odkazy

PubMed 32071085
PubMed Central PMC7105295
DOI 10.1074/jbc.ra119.012174
PII: S0021-9258(17)48749-7
Knihovny.cz E-zdroje

In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.

Zobrazit více v PubMed

Sleytr U. B. (1975) Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature 257, 400–402 10.1038/257400a0 PubMed DOI

Sleytr U. B. (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int. Rev. Cytol. 53, 1–62 10.1016/S0074-7696(08)62240-8 PubMed DOI

Messner P., and Sleytr U. B. (1991) Bacterial surface layer glycoproteins. Glycobiology 1, 545–551 10.1093/glycob/1.6.545 PubMed DOI

Sleytr U. B., Messner P., Pum D., and Sára M. (1993) Crystalline bacterial cell surface layers. Mol. Microbiol. 10, 911–916 10.1111/j.1365-2958.1993.tb00962.x PubMed DOI

Bahl H., Scholz H., Bayan N., Chami M., Leblon G., Gulik-Krzywicki T., Shechter E., Fouet A., Mesnage S., Tosi-Couture E., Gounon P., Mock M., Conway de Macario E., Macario A. J., Fernández-Herrero L. A., et al. (1997) Molecular biology of S-layers. FEMS Microbiol. Rev. 20, 47–98 10.1111/j.1574-6976.1997.tb00304.x PubMed DOI

Messner P., Allmaier G., Schäffer C., Wugeditsch T., Lortal S., König H., Niemetz R., and Dorner M. (1997) Biochemistry of S-layers. FEMS Microbiol. Rev. 20, 25–46 10.1111/j.1574-6976.1997.tb00303.x PubMed DOI

Pavkov T., Egelseer E. M., Tesarz M., Svergun D. I., Sleytr U. B., and Keller W. (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16, 1226–1237 10.1016/j.str.2008.05.012 PubMed DOI

Gentner N. E., and Mitchel R. E. (1975) Ionizing radiation-induced release of a cell surface nuclease from PubMed DOI

Sleytr U. B., and Sára M. (1997) Bacterial and archaeal S-layer proteins: structure–function relationship and their biotechnological applications. Trends Biotechnol. 15, 20–26 10.1016/S0167-7799(96)10063-9 PubMed DOI

Pavkov-Keller T., Howorka S., and Keller W. (2011) The structure of bacterial S-layer proteins. Prog. Mol. Biol. Transl. Sci. 103, 73–130 10.1016/B978-0-12-415906-8.00004-2 PubMed DOI

Farci D., Slavov C., Tramontano E., and Piano D. (2016) The S-layer protein DR_2577 binds the carotenoid deinoxanthin and under desiccation conditions protect against UV-radiation in PubMed DOI PMC

Farci D., Slavov C., and Piano D. (2018) Coexisting properties of thermostability and Ultraviolet radiation resistance in the main S-layer complex of PubMed DOI

Beveridge T. J., Pouwels P. H., Sára M., Kotiranta A., Lounatmaa K., Kari K., Kerosuo E., Haapasalo M., Egelseer E. M., Schocher I., Sleytr U. B., Morelli L., Callegari M. L., Nomellini J. F., Bingle W. H., et al. (1997) Functions of S-layers. FEMS Microbiol. Rev. 20, 99–149 10.1111/j.1574-6976.1997.tb00305.x PubMed DOI

Rachel R., Pum D., Šmarda J., Šmajs D., Komrska J., Krzyzánek V., Rieger G., and Stetter K. O. (1997) Fine structure of S-layers. FEMS Microbiol. Rev. 20, 13–23 10.1111/j.1574-6976.1997.tb00302.x DOI

Asif M., Alvi I. A., and Rehman S. U. (2018) Insight into PubMed DOI PMC

Hall S. R., Shenton W., Engelhardt H., and Mann S. (2001) Site-specific organization of gold nanoparticles by biomolecular templating. Chemphyschem 2, 184–186 10.1002/1439-7641(20010316)2:3<184::AID-CPHC184>3.0.CO;2-J PubMed DOI

Mark S. S., Bergkvist M., Yang X., Teixeira L. M., Bhatnagar P., Angert E. R., and Batt C. A. (2006) Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. Langmuir 22, 3763–3774 10.1021/la053115v PubMed DOI

Fagan R. P., and Fairweather N. F. (2014) Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 10.1038/nrmicro3213 PubMed DOI

Baranova E., Fronzes R., Garcia-Pino A., Van Gerven N., Papapostolou D., Péhau-Arnaudet G., Pardon E., Steyaert J., Howorka S., and Remaut H. (2012) SbsB structure and lattice reconstruction unveil Ca PubMed DOI

Bharat T. A. M., Kureisaite-Ciziene D., Hardy G. G., Yu E. W., Devant J. M., Hagen W. J. H., Brun Y. V., Briggs J. A. G., and Löwe J. (2017) Structure of the hexagonal surface layer on PubMed DOI PMC

Baumeister W., Karrenberg F., Rachel R., Engel A., ten Heggeler B., and Saxton W. O. (1982) The major cell envelope protein of PubMed DOI

Daly M. J., Ouyang L., Fuchs P., and Minton K. W. (1994) PubMed DOI PMC

White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C., Richardson D. L., Moffat K. S., Qin H., Jiang L., Pamphile W., Crosby M., et al. (1999) Genome sequence of the radioresistant bacterium PubMed DOI PMC

Lin J., Qi R., Aston C., Jing J., Anantharaman T. S., Mishra B., White O., Daly M. J., Minton K. W., Venter J. C., and Schwartz D. C. (1999) Whole-genome shotgun optical mapping of PubMed DOI

Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., and Daly M. J. (2001) Genome of the extremely radiation-resistant bacterium PubMed DOI PMC

Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., and Minsky A. (2003) Ringlike structure of the PubMed DOI

Liu Y., Zhou J., Omelchenko M. V., Beliaev A. S., Venkateswaran A., Stair J., Wu L., Thompson D. K., Xu D., Rogozin I. B., Gaidamakova E. K., Zhai M., Makarova K. S., Koonin E. V., and Daly M. J. (2003) Transcriptome dynamics of PubMed DOI PMC

Baumeister W., Barth M., Hegerl R., Guckenberger R., Hahn M., and Saxton W. O. (1986) Three-dimensional structure of the regular surface layer (HPI layer) of PubMed DOI

Rachel R., Jakubowski U., Tietz H., Hegerl R., and Baumeister W. (1986) Projected structure of the surface protein of DOI

Müller D. J., Schoenenberger C. A., Schabert F., and Engel A. (1997) Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J. Struct. Biol. 119, 149–157 10.1006/jsbi.1997.3878 PubMed DOI

Lister T. E., and Pinhero P. J. (2001) DOI

Müller D. J., Baumeister W., and Engel A. (1996) Conformational change of the hexagonally packed intermediate layer of PubMed DOI PMC

Farci D., Bowler M. W., Kirkpatrick J., McSweeney S., Tramontano E., and Piano D. (2014) New features of the cell wall of the radioresistant bacterium PubMed DOI

Peters J., and Baumeister W. (1986) Molecular cloning, expression, and characterization of the gene for the surface (Hpi)-layer protein of PubMed DOI PMC

Rothfuss H., Lara J. C., Schmid A. K., and Lidstrom M. E. (2006) Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in PubMed DOI

Farci D., Bowler M. W., Esposito F., McSweeney S., Tramontano E., and Piano D. (2015) Purification and characterization of DR_2577 (SlpA), a major S-layer protein from PubMed DOI PMC

Farci D., Guadalupi G., Bierła K., Lobinski R., and Piano D. (2019) The role of iron and copper on the oligomerization dynamics of DR_2577, the main S-layer protein of PubMed DOI PMC

Sára M., and Sleytr U. B. (2000) S-layer proteins. J. Bacteriol. 182, 859–868 10.1128/JB.182.4.859-868.2000 PubMed DOI PMC

Dworkin J., Tummuru M. K., and Blaser M. J. (1995) Segmental conservation of sapA sequences in type B PubMed DOI

Dworkin J., Shedd O. L., and Blaser M. J. (1997) Nested DNA inversion of PubMed DOI PMC

Farci D., Esposito F., El Alaoui S., and Piano D. (2017) S-layer proteins as a source of carotenoids: isolation of the protein cofactor deinoxanthin from its S-layer protein DR_2577. Food Res. Int. 99, 868–876 10.1016/j.foodres.2016.10.003 PubMed DOI

Vollan H., Tannæs T., Vriend G., and Bukholm G. (2016) PubMed DOI PMC

Thornley M. J., Glauert A. M., and Sleytr U. B. (1973) Isolation of outer membranes with an ordered array of subunits from PubMed PMC

Madhurantakam C., Howorka S., and Remaut H. (2014) S-layer Structure in Bacteria and Archaea (Barton L. L., Bazylinski D., and Xu H., eds), pp. 11–37, Springer, New York, NY

Sleytr U. B., Schuster B., Egelseer E. M., and Pum D. (2014) S-layers: principles and applications. FEMS Microbiol. Rev. 38, 823–864 10.1111/1574-6976.12063 PubMed DOI PMC

Modi N., Ganguly S., Bárcena-Uribarri I., Benz R., van den Berg B., and Kleinekathöfer U. (2015) Structure, dynamics, and substrate specificity of the OprO porin from PubMed DOI PMC

Hille B. (2007) Ion Channels of Excitable Membranes. Sunderland, MA

Kota S., and Misra H. S. (2008) Identification of a DNA processing complex from PubMed DOI

Hvidsten T. R., Laegreid A., Kryshtafovych A., Andersson G., Fidelis K., and Komorowski J. (2009) A comprehensive analysis of the structure– function relationship in proteins based on local structure similarity. PLoS ONE. 4, e6266 10.1371/journal.pone.0006266 PubMed DOI PMC

Benz R., and Orlik F. (2004) Bacterial and Eukaryotic Porins: Structure, Function, Mechanism (Benz Roland, ed) Wiley Interscience, New York

Forte M., Adelsberger-Mangan D., and Colombini M. (1987) Purification and characterization of the voltage-dependent anion channel from the outer mitochondrial membrane of yeast. J. Membr. Biol. 99, 65–72 10.1007/BF01870622 PubMed DOI

Ghai I., Pira A., Scorciapino M. A., Bodrenko I., Benier L., Ceccarelli M., Winterhalter M., and Wagner R. (2017) General method to determine the flux of charged molecules through nanopores applied to β-lactamase inhibitors and OmpF. J. Phys. Chem. Lett. 8, 1295–1301 10.1021/acs.jpclett.7b00062 PubMed DOI

Sotiropoulou S., Mark S. S., Angert E. R., and Batt C. A. (2007) Nanoporous S-layer protein lattices. A biological ion gate with calcium selectivity. J. Phys. Chem. C 111, 13232–13237 10.1021/jp072132l DOI

Schwarzenlander C., Haase W., and Averhoff B. (2009) The role of single subunits of the DNA transport machinery of PubMed DOI

Sutcliffe I. C. (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 10.1016/j.tim.2010.06.005 PubMed DOI

Arbing M. A., Chan S., Shin A., Phan T., Ahn C. J., Rohlin L., and Gunsalus R. P. (2012) Structure of the surface layer of the methanogenic archaean PubMed DOI PMC

Etienne-Toumelin I., Sirard J. C., Duflot E., Mock M., and Fouet A. (1995) Characterization of the PubMed DOI PMC

Kern J., Wilton R., Zhang R., Binkowski T. A., Joachimiak A., and Schneewind O. (2011) Structure of surface layer homology (SLH) domains from PubMed DOI PMC

Eschweiler B., Gerstenecker B., Moriki T., Bohrmann B., and Kist M. (1994) in Basic and Clinical Aspects of Helicobacter pylori Infection (Gasbarrini G., and Pretolani S., eds) Springer, Berlin, Heidelberg, Germany

Diatlov I. A., and Antonova O. A. (1999) The detection and characteristics of the PubMed

Pei Z., and Blaser M. J. (1990) Pathogenesis of PubMed DOI PMC

McConnell M. J., Actis L., and Pachón J. (2013) PubMed DOI

Murray R. G. E. (1992) in The Prokaryotes (Balows H. G., Dworkin H., Harder W., and Schleifer K. H., eds) pp. 3732–3744, Springer, New York

Apweiler R., Bairoch A., and Wu C. H. (2004) Protein sequence databases. Curr. Opin. Chem. Biol. 8, 76–80 10.1016/j.cbpa.2003.12.004 PubMed DOI

UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 10.1093/nar/gky1049 PubMed DOI PMC

Söding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 10.1093/bioinformatics/bti125 PubMed DOI

Hildebrand A., Remmert M., Biegert A., and Söding J. (2009) Fast and accurate automatic structure prediction with Hhpred. Proteins 77, Suppl. 9, 128–132 10.1002/prot.22499 PubMed DOI

Meier A., and Söding J. (2015) Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput. Biol. 11, e1004343 10.1371/journal.pcbi.1004343 PubMed DOI PMC

Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J. D., and Higgins D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 10.1038/msb.2011.75 PubMed DOI PMC

Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., and Xu J. (2012) Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 10.1038/nprot.2012.085 PubMed DOI PMC

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., and Ferrin T. E. (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 10.1002/jcc.20084 PubMed DOI

Farci D., Farci S. F., Esposito F., Tramontano E., Kirkpatrick J., and Piano D. (2018) On the S-layer of PubMed DOI

Farci D., Kirkpatrick J., and Piano D. (2017) A new procedure for fast soft staining of BN-PAGEs on photosynthetic complexes. Electrophoresis 38, 441–446 10.1002/elps.201600389 PubMed DOI

Zhang K. (2016) Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 10.1016/j.jsb.2015.11.003 PubMed DOI PMC

Tang G., Peng L., Baldwin P. R., Mann D. S., Jiang W., Rees I., and Ludtke S. J. (2007) EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 10.1016/j.jsb.2006.05.009 PubMed DOI

Scheres S. H. (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 10.1016/j.jsb.2012.09.006 PubMed DOI PMC

Haniewicz P., Abram M., Nosek L., Kirkpatrick J., El-Mohsnawy E., Olmos J. D. J., Kouřil R., and Kargul J. M. (2018) Molecular mechanisms of photoadaptation of Photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol. 176, 1433–1451 10.1104/pp.17.01022 PubMed DOI PMC

Cox J., and Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies, and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 10.1038/nbt.1511 PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., and Mann M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 10.1021/pr101065j PubMed DOI

Elias J. E., and Gygi S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 10.1038/nmeth1019 PubMed DOI

Montal M., and Mueller P. (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69, 3561–3566 10.1073/pnas.69.12.3561 PubMed DOI PMC

Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 10.1093/nar/gkv1145 PubMed DOI PMC

Deutsch E. W., Csordas A., Sun Z., Jarnuczak A., Perez-Riverol Y., Ternent T., Campbell D. S., Bernal-Llinares M., Okuda S., Kawano S., Moritz R. L., Carver J. J., Wang M., Ishihama Y., Bandeira N., Hermjakob H., and Vizcaíno J. A. (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 45, D1100–D1106 10.1093/nar/gkw936 PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz Ş. (2018) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442—D450 10.1093/nar/gky1106 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...