Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32071085
PubMed Central
PMC7105295
DOI
10.1074/jbc.ra119.012174
PII: S0021-9258(17)48749-7
Knihovny.cz E-zdroje
- Klíčová slova
- Deinococcus radiodurans, S-layer, S-layer deinoxanthin–binding complex (SDBC), electron microscopy (EM), electrophysiology, gating, mass spectrometry (MS), membrane protein, porin-like complex, protein structure, stress resistance, structure–function,
- MeSH
- bakteriální proteiny chemie genetika MeSH
- buněčná membrána chemie MeSH
- buněčná stěna chemie MeSH
- Deinococcus chemie genetika MeSH
- karotenoidy chemie MeSH
- membránové glykoproteiny chemie MeSH
- multiproteinové komplexy chemie genetika MeSH
- poriny chemie MeSH
- vazba proteinů genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- deinoxanthin MeSH Prohlížeč
- karotenoidy MeSH
- membránové glykoproteiny MeSH
- multiproteinové komplexy MeSH
- poriny MeSH
- S-layer proteins MeSH Prohlížeč
In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.
Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
Department of Physics and IOM CNR University of Cagliari 09042 Monserrato Italy
Zobrazit více v PubMed
Sleytr U. B. (1975) Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature 257, 400–402 10.1038/257400a0 PubMed DOI
Sleytr U. B. (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int. Rev. Cytol. 53, 1–62 10.1016/S0074-7696(08)62240-8 PubMed DOI
Messner P., and Sleytr U. B. (1991) Bacterial surface layer glycoproteins. Glycobiology 1, 545–551 10.1093/glycob/1.6.545 PubMed DOI
Sleytr U. B., Messner P., Pum D., and Sára M. (1993) Crystalline bacterial cell surface layers. Mol. Microbiol. 10, 911–916 10.1111/j.1365-2958.1993.tb00962.x PubMed DOI
Bahl H., Scholz H., Bayan N., Chami M., Leblon G., Gulik-Krzywicki T., Shechter E., Fouet A., Mesnage S., Tosi-Couture E., Gounon P., Mock M., Conway de Macario E., Macario A. J., Fernández-Herrero L. A., et al. (1997) Molecular biology of S-layers. FEMS Microbiol. Rev. 20, 47–98 10.1111/j.1574-6976.1997.tb00304.x PubMed DOI
Messner P., Allmaier G., Schäffer C., Wugeditsch T., Lortal S., König H., Niemetz R., and Dorner M. (1997) Biochemistry of S-layers. FEMS Microbiol. Rev. 20, 25–46 10.1111/j.1574-6976.1997.tb00303.x PubMed DOI
Pavkov T., Egelseer E. M., Tesarz M., Svergun D. I., Sleytr U. B., and Keller W. (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16, 1226–1237 10.1016/j.str.2008.05.012 PubMed DOI
Gentner N. E., and Mitchel R. E. (1975) Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans. Radiat. Res. 61, 204–215 10.2307/3574039 PubMed DOI
Sleytr U. B., and Sára M. (1997) Bacterial and archaeal S-layer proteins: structure–function relationship and their biotechnological applications. Trends Biotechnol. 15, 20–26 10.1016/S0167-7799(96)10063-9 PubMed DOI
Pavkov-Keller T., Howorka S., and Keller W. (2011) The structure of bacterial S-layer proteins. Prog. Mol. Biol. Transl. Sci. 103, 73–130 10.1016/B978-0-12-415906-8.00004-2 PubMed DOI
Farci D., Slavov C., Tramontano E., and Piano D. (2016) The S-layer protein DR_2577 binds the carotenoid deinoxanthin and under desiccation conditions protect against UV-radiation in Deinococcus radiodurans. Front. Microbiol. 7, 155 10.3389/fmicb.2016.00155 PubMed DOI PMC
Farci D., Slavov C., and Piano D. (2018) Coexisting properties of thermostability and Ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans. Photochem. Photobiol. Sci. 17, 81–88 10.1039/C7PP00240H PubMed DOI
Beveridge T. J., Pouwels P. H., Sára M., Kotiranta A., Lounatmaa K., Kari K., Kerosuo E., Haapasalo M., Egelseer E. M., Schocher I., Sleytr U. B., Morelli L., Callegari M. L., Nomellini J. F., Bingle W. H., et al. (1997) Functions of S-layers. FEMS Microbiol. Rev. 20, 99–149 10.1111/j.1574-6976.1997.tb00305.x PubMed DOI
Rachel R., Pum D., Šmarda J., Šmajs D., Komrska J., Krzyzánek V., Rieger G., and Stetter K. O. (1997) Fine structure of S-layers. FEMS Microbiol. Rev. 20, 13–23 10.1111/j.1574-6976.1997.tb00302.x DOI
Asif M., Alvi I. A., and Rehman S. U. (2018) Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect. Drug Resist. 11, 1249–1260 10.2147/IDR.S166750 PubMed DOI PMC
Hall S. R., Shenton W., Engelhardt H., and Mann S. (2001) Site-specific organization of gold nanoparticles by biomolecular templating. Chemphyschem 2, 184–186 10.1002/1439-7641(20010316)2:3<184::AID-CPHC184>3.0.CO;2-J PubMed DOI
Mark S. S., Bergkvist M., Yang X., Teixeira L. M., Bhatnagar P., Angert E. R., and Batt C. A. (2006) Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. Langmuir 22, 3763–3774 10.1021/la053115v PubMed DOI
Fagan R. P., and Fairweather N. F. (2014) Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 10.1038/nrmicro3213 PubMed DOI
Baranova E., Fronzes R., Garcia-Pino A., Van Gerven N., Papapostolou D., Péhau-Arnaudet G., Pardon E., Steyaert J., Howorka S., and Remaut H. (2012) SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 10.1038/nature11155 PubMed DOI
Bharat T. A. M., Kureisaite-Ciziene D., Hardy G. G., Yu E. W., Devant J. M., Hagen W. J. H., Brun Y. V., Briggs J. A. G., and Löwe J. (2017) Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2, 17059 10.1038/nmicrobiol.2017.59 PubMed DOI PMC
Baumeister W., Karrenberg F., Rachel R., Engel A., ten Heggeler B., and Saxton W. O. (1982) The major cell envelope protein of Micrococcus radiodurans (R1). Structural and chemical characterization. Eur. J. Biochem. 125, 535–544 10.1111/j.1432-1033.1982.tb06715.x PubMed DOI
Daly M. J., Ouyang L., Fuchs P., and Minton K. W. (1994) In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176, 3508–3517 10.1128/JB.176.12.3508-3517.1994 PubMed DOI PMC
White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C., Richardson D. L., Moffat K. S., Qin H., Jiang L., Pamphile W., Crosby M., et al. (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 10.1126/science.286.5444.1571 PubMed DOI PMC
Lin J., Qi R., Aston C., Jing J., Anantharaman T. S., Mishra B., White O., Daly M. J., Minton K. W., Venter J. C., and Schwartz D. C. (1999) Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285, 1558–1562 10.1126/science.285.5433.1558 PubMed DOI
Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., and Daly M. J. (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44–79 10.1128/MMBR.65.1.44-79.2001 PubMed DOI PMC
Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., and Minsky A. (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299, 254–256 10.1126/science.1077865 PubMed DOI
Liu Y., Zhou J., Omelchenko M. V., Beliaev A. S., Venkateswaran A., Stair J., Wu L., Thompson D. K., Xu D., Rogozin I. B., Gaidamakova E. K., Zhai M., Makarova K. S., Koonin E. V., and Daly M. J. (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. U.S.A. 100, 4191–4196 10.1073/pnas.0630387100 PubMed DOI PMC
Baumeister W., Barth M., Hegerl R., Guckenberger R., Hahn M., and Saxton W. O. (1986) Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 187, 241–250 10.1016/0022-2836(86)90231-7 PubMed DOI
Rachel R., Jakubowski U., Tietz H., Hegerl R., and Baumeister W. (1986) Projected structure of the surface protein of Deinococcus radiodurans determined to 8Å resolution by cryomicroscopy. Ultramicroscopy 20, 305–316 10.1016/0304-3991(86)90194-4 DOI
Müller D. J., Schoenenberger C. A., Schabert F., and Engel A. (1997) Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J. Struct. Biol. 119, 149–157 10.1006/jsbi.1997.3878 PubMed DOI
Lister T. E., and Pinhero P. J. (2001) In vivo atomic force microscopy of surface proteins on Deinococcus radiodurans. Langmuir 17, 2624–2628 10.1021/la001448g DOI
Müller D. J., Baumeister W., and Engel A. (1996) Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178, 3025–3030 10.1128/JB.178.11.3025-3030.1996 PubMed DOI PMC
Farci D., Bowler M. W., Kirkpatrick J., McSweeney S., Tramontano E., and Piano D. (2014) New features of the cell wall of the radioresistant bacterium Deinococcus radiodurans. Biochim. Biophys. Acta 1838, 1978–1984 10.1016/j.bbamem.2014.02.014 PubMed DOI
Peters J., and Baumeister W. (1986) Molecular cloning, expression, and characterization of the gene for the surface (Hpi)-layer protein of Deinococcus radiodurans in Escherichia coli. J. Bacteriol. 167, 1048–1054 10.1128/JB.167.3.1048-1054.1986 PubMed DOI PMC
Rothfuss H., Lara J. C., Schmid A. K., and Lidstrom M. E. (2006) Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 152, 2779–2787 10.1099/mic.0.28971-0 PubMed DOI
Farci D., Bowler M. W., Esposito F., McSweeney S., Tramontano E., and Piano D. (2015) Purification and characterization of DR_2577 (SlpA), a major S-layer protein from Deinococcus radiodurans. Front. Microbiol. 6, 414 10.3389/fmicb.2015.00414 PubMed DOI PMC
Farci D., Guadalupi G., Bierła K., Lobinski R., and Piano D. (2019) The role of iron and copper on the oligomerization dynamics of DR_2577, the main S-layer protein of Deinococcus radiodurans. Front. Microbiol. 10, 1450 10.3389/fmicb.2019.01450 PubMed DOI PMC
Sára M., and Sleytr U. B. (2000) S-layer proteins. J. Bacteriol. 182, 859–868 10.1128/JB.182.4.859-868.2000 PubMed DOI PMC
Dworkin J., Tummuru M. K., and Blaser M. J. (1995) Segmental conservation of sapA sequences in type B Campylobacter fetus cells. J. Biol. Chem. 270, 15093–15101 10.1074/jbc.270.25.15093 PubMed DOI
Dworkin J., Shedd O. L., and Blaser M. J. (1997) Nested DNA inversion of Campylobacter fetus S-layer genes is recA-dependent. J. Bacteriol. 179, 7523–7529 10.1128/JB.179.23.7523-7529.1997 PubMed DOI PMC
Farci D., Esposito F., El Alaoui S., and Piano D. (2017) S-layer proteins as a source of carotenoids: isolation of the protein cofactor deinoxanthin from its S-layer protein DR_2577. Food Res. Int. 99, 868–876 10.1016/j.foodres.2016.10.003 PubMed DOI
Vollan H., Tannæs T., Vriend G., and Bukholm G. (2016) In silico structure and sequence analysis of bacterial porins and specific diffusion channels for hydrophilic molecules: conservation, multimericity, and multifunctionality. Int. J. Mol. Sci. 17, 599 10.3390/ijms17040599 PubMed DOI PMC
Thornley M. J., Glauert A. M., and Sleytr U. B. (1973) Isolation of outer membranes with an ordered array of subunits from Acinetobacter. J. Bacteriol. 115, 1294–1308 PubMed PMC
Madhurantakam C., Howorka S., and Remaut H. (2014) S-layer Structure in Bacteria and Archaea (Barton L. L., Bazylinski D., and Xu H., eds), pp. 11–37, Springer, New York, NY
Sleytr U. B., Schuster B., Egelseer E. M., and Pum D. (2014) S-layers: principles and applications. FEMS Microbiol. Rev. 38, 823–864 10.1111/1574-6976.12063 PubMed DOI PMC
Modi N., Ganguly S., Bárcena-Uribarri I., Benz R., van den Berg B., and Kleinekathöfer U. (2015) Structure, dynamics, and substrate specificity of the OprO porin from Pseudomonas aeruginosa. Biophys. J. 109, 1429–1438 10.1016/j.bpj.2015.07.035 PubMed DOI PMC
Hille B. (2007) Ion Channels of Excitable Membranes. Sunderland, MA
Kota S., and Misra H. S. (2008) Identification of a DNA processing complex from Deinococcus radiodurans. Biochem. Cell Biol. 86, 448–458 10.1139/O08-122 PubMed DOI
Hvidsten T. R., Laegreid A., Kryshtafovych A., Andersson G., Fidelis K., and Komorowski J. (2009) A comprehensive analysis of the structure– function relationship in proteins based on local structure similarity. PLoS ONE. 4, e6266 10.1371/journal.pone.0006266 PubMed DOI PMC
Benz R., and Orlik F. (2004) Bacterial and Eukaryotic Porins: Structure, Function, Mechanism (Benz Roland, ed) Wiley Interscience, New York
Forte M., Adelsberger-Mangan D., and Colombini M. (1987) Purification and characterization of the voltage-dependent anion channel from the outer mitochondrial membrane of yeast. J. Membr. Biol. 99, 65–72 10.1007/BF01870622 PubMed DOI
Ghai I., Pira A., Scorciapino M. A., Bodrenko I., Benier L., Ceccarelli M., Winterhalter M., and Wagner R. (2017) General method to determine the flux of charged molecules through nanopores applied to β-lactamase inhibitors and OmpF. J. Phys. Chem. Lett. 8, 1295–1301 10.1021/acs.jpclett.7b00062 PubMed DOI
Sotiropoulou S., Mark S. S., Angert E. R., and Batt C. A. (2007) Nanoporous S-layer protein lattices. A biological ion gate with calcium selectivity. J. Phys. Chem. C 111, 13232–13237 10.1021/jp072132l DOI
Schwarzenlander C., Haase W., and Averhoff B. (2009) The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environ. Microbiol. 11, 801–808 10.1111/j.1462-2920.2008.01801.x PubMed DOI
Sutcliffe I. C. (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 10.1016/j.tim.2010.06.005 PubMed DOI
Arbing M. A., Chan S., Shin A., Phan T., Ahn C. J., Rohlin L., and Gunsalus R. P. (2012) Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc. Natl. Acad. Sci. U.S.A. 109, 11812–11817 10.1073/pnas.1120595109 PubMed DOI PMC
Etienne-Toumelin I., Sirard J. C., Duflot E., Mock M., and Fouet A. (1995) Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J. Bacteriol. 177, 614–620 10.1128/JB.177.3.614-620.1995 PubMed DOI PMC
Kern J., Wilton R., Zhang R., Binkowski T. A., Joachimiak A., and Schneewind O. (2011) Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J. Biol. Chem. 286, 26042–26049 10.1074/jbc.M111.248070 PubMed DOI PMC
Eschweiler B., Gerstenecker B., Moriki T., Bohrmann B., and Kist M. (1994) in Basic and Clinical Aspects of Helicobacter pylori Infection (Gasbarrini G., and Pretolani S., eds) Springer, Berlin, Heidelberg, Germany
Diatlov I. A., and Antonova O. A. (1999) The detection and characteristics of the Yersinia pestis antigen exhibiting the properties of S-layer proteins. Zh Mikrobiol. Epidemiol. Immunobiol. 4, 90–91 PubMed
Pei Z., and Blaser M. J. (1990) Pathogenesis of Campylobacter fetus infections. Role of surface array proteins in virulence in a mouse model. J. Clin. Invest. 85, 1036–1043 10.1172/JCI114533 PubMed DOI PMC
McConnell M. J., Actis L., and Pachón J. (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 37, 130–155 10.1111/j.1574-6976.2012.00344.x PubMed DOI
Murray R. G. E. (1992) in The Prokaryotes (Balows H. G., Dworkin H., Harder W., and Schleifer K. H., eds) pp. 3732–3744, Springer, New York
Apweiler R., Bairoch A., and Wu C. H. (2004) Protein sequence databases. Curr. Opin. Chem. Biol. 8, 76–80 10.1016/j.cbpa.2003.12.004 PubMed DOI
UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 10.1093/nar/gky1049 PubMed DOI PMC
Söding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 10.1093/bioinformatics/bti125 PubMed DOI
Hildebrand A., Remmert M., Biegert A., and Söding J. (2009) Fast and accurate automatic structure prediction with Hhpred. Proteins 77, Suppl. 9, 128–132 10.1002/prot.22499 PubMed DOI
Meier A., and Söding J. (2015) Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput. Biol. 11, e1004343 10.1371/journal.pcbi.1004343 PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J. D., and Higgins D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 10.1038/msb.2011.75 PubMed DOI PMC
Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., and Xu J. (2012) Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 10.1038/nprot.2012.085 PubMed DOI PMC
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., and Ferrin T. E. (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 10.1002/jcc.20084 PubMed DOI
Farci D., Farci S. F., Esposito F., Tramontano E., Kirkpatrick J., and Piano D. (2018) On the S-layer of Thermus thermophilus and the assembling of its main protein SlpA. Biochim. Biophys. Acta 1860, 1554–1562 10.1016/j.bbamem.2018.05.010 PubMed DOI
Farci D., Kirkpatrick J., and Piano D. (2017) A new procedure for fast soft staining of BN-PAGEs on photosynthetic complexes. Electrophoresis 38, 441–446 10.1002/elps.201600389 PubMed DOI
Zhang K. (2016) Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 10.1016/j.jsb.2015.11.003 PubMed DOI PMC
Tang G., Peng L., Baldwin P. R., Mann D. S., Jiang W., Rees I., and Ludtke S. J. (2007) EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 10.1016/j.jsb.2006.05.009 PubMed DOI
Scheres S. H. (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 10.1016/j.jsb.2012.09.006 PubMed DOI PMC
Haniewicz P., Abram M., Nosek L., Kirkpatrick J., El-Mohsnawy E., Olmos J. D. J., Kouřil R., and Kargul J. M. (2018) Molecular mechanisms of photoadaptation of Photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol. 176, 1433–1451 10.1104/pp.17.01022 PubMed DOI PMC
Cox J., and Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies, and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 10.1038/nbt.1511 PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., and Mann M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 10.1021/pr101065j PubMed DOI
Elias J. E., and Gygi S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 10.1038/nmeth1019 PubMed DOI
Montal M., and Mueller P. (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69, 3561–3566 10.1073/pnas.69.12.3561 PubMed DOI PMC
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 10.1093/nar/gkv1145 PubMed DOI PMC
Deutsch E. W., Csordas A., Sun Z., Jarnuczak A., Perez-Riverol Y., Ternent T., Campbell D. S., Bernal-Llinares M., Okuda S., Kawano S., Moritz R. L., Carver J. J., Wang M., Ishihama Y., Bandeira N., Hermjakob H., and Vizcaíno J. A. (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 45, D1100–D1106 10.1093/nar/gkw936 PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz Ş. (2018) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442—D450 10.1093/nar/gky1106 PubMed DOI PMC
PDB
4rjw