The cryo-EM structure of the S-layer deinoxanthin-binding complex of Deinococcus radiodurans informs properties of its environmental interactions
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35577074
PubMed Central
PMC9189128
DOI
10.1016/j.jbc.2022.102031
PII: S0021-9258(22)00471-9
Knihovny.cz E-resources
- Keywords
- DR_2577, S-layer, SDBC, SlpA, amino acid import, cell envelope deinoxanthin, phosphoglycolipids, porins, transport properties,
- MeSH
- Bacterial Proteins * chemistry MeSH
- Deinococcus * chemistry MeSH
- Cryoelectron Microscopy MeSH
- Carotenoids * chemistry MeSH
- Multiprotein Complexes * chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins * MeSH
- deinoxanthin MeSH Browser
- Carotenoids * MeSH
- Multiprotein Complexes * MeSH
The radiation-resistant bacterium Deinococcus radiodurans is known as the world's toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies. Its main proteinaceous unit, the S-layer deinoxanthin-binding complex (SDBC), is a hetero-oligomeric assembly known to contribute to the resistance against environmental stress and have porin functional features; however, its precise structure is unknown. Here, we resolved the structure of the SDBC at ∼2.5 Å resolution by cryo-EM and assigned the sequence of its main subunit, the protein DR_2577. This structure is characterized by a pore region, a massive β-barrel organization, a stalk region consisting of a trimeric coiled coil, and a collar region at the base of the stalk. We show that each monomer binds three Cu ions and one Fe ion and retains one deinoxanthin molecule and two phosphoglycolipids, all exclusive to D. radiodurans. Finally, electrophysiological characterization of the SDBC shows that it exhibits transport properties with several amino acids. Taken together, these results highlight the SDBC as a robust structure displaying both protection and sieving functions that facilitates exchanges with the environment.
Department of Life Sciences and Chemistry Jacobs University Bremen Bremen Germany
Department of Plant Physiology Warsaw University of Life Sciences SGGW Warsaw Poland
Structural Biology Group ESRF The European Synchrotron Radiation Facility Grenoble France
See more in PubMed
Bahl H., Scholz H., Bayan N., Chami M., Leblon G., Gulik-Krzywicki T., et al. Molecular biology of S-layers. FEMS Microbiol. Rev. 1997;20:47–98. PubMed
Messner P., Allmaier G., Schäffer C., Wugeditsch T., Lortal S., König H., et al. Biochemistry of S-layers. FEMS Microbiol. Rev. 1997;20:25–46. PubMed
Gentner N.E., Mitchel R.E. Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans. Radiat. Res. 1975;61:204–215. PubMed
Sleytr U.B., Sàra M. Bacterial and archaeal S-layer proteins: Structure–function relationship and their biotechnological applications. Trends Biotechnol. 1997;15:20–26. PubMed
Kumar J., Ghosh P., Kumar A. Ultraviolet-B radiation stress-induced toxicity and alterations in proteome of Deinococcus radiodurans. Microb. Physiol. 2021;31:1–15. PubMed
Baranova E., Fronzes R., Garcia-Pino A., Van Gerven N., Papapostolou D., Péhau-Arnaudet G., et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature. 2012;487:119–122. PubMed
Bharat T.A.M., Kureisaite-Ciziene D., Hardy G.G., Yu E.W., Devant J.M., Hagen W.J.H., et al. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2017;2:17059. PubMed PMC
Baumeister W., Barth M., Hegerl R., Guckenberger R., Hahn M., Saxton W.O. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 1986;187:241–250. PubMed
Müller D.J., Schoenenberger C.A., Schabert F., Engel A. Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J. Struct. Biol. 1997;119:149–157. PubMed
Lister T.E., Pinhero P.J. In vivo atomic force microscopy of surface proteins on Deinococcus radiodurans. Langmuir. 2001;17:2624–2628.
Farci D., Kereïche S., Pangeni S., Haniewicz P., Bodrenko I.V., Ceccarelli M., et al. Structural analysis of the architecture and in situ localization of the main S-layer complex in Deinococcus radiodurans. Structure. 2021;29:1279–1285.e3. PubMed
Farci D., Bowler M.W., Kirkpatrick J., McSweeney S., Tramontano E., Piano D. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochim. Biophys. Acta. 2014;1838:1978–1984. PubMed
Farci D., Bowler M.W., Esposito F., McSweeney S., Tramontano E., Piano D. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans. Front. Microbiol. 2015;6:414. PubMed PMC
Farci D., Slavov C., Tramontano E., Piano D. The S-layer protein DR_2577 binds the carotenoid deinoxanthin and under desiccation conditions protect against UV-radiation in Deinococcus radiodurans. Front. Microbiol. 2016;7:155. PubMed PMC
Farci D., Slavov C., Piano D. Coexisting properties of thermostability and Ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans. Photochem. Photobiol. Sci. 2018;17:81–88. PubMed
Farci D., Guadalupi G., Bierła K., Lobinski R., Piano D. The role of iron and copper on the oligomerization dynamics of DR_2577, the main S-layer protein of Deinococcus radiodurans. Front. Microbiol. 2019;10:1450. PubMed PMC
Adamec F., Farci D., Bína D., Litvín R., Khan T., Fuciman M., et al. Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of. Deinococcus Radiodurans. Photochem. Photobiol. Sci. 2020;19:495–503. PubMed
Farci D., Aksoyoglu M.A., Farci S.F., Bafna J.A., Bodrenko I., Ceccarelli M., et al. Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features. J. Biol. Chem. 2020;295:4224–4236. PubMed PMC
Rothfuss H., Lara J.C., Schmid A.K., Lidstrom M.E. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology. 2006;152:2779–2787. PubMed
Handing K.B., Niedzialkowska E., Shabalin I.G., Kuhn M.L., Zheng H., Minor W. Characterizing metal-binding sites in proteins with X-ray crystallography. Nat. Protoc. 2018;13:1062–1090. PubMed PMC
Anderson R., Hansen K. Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J. Biol. Chem. 1985;260:12219–12223. PubMed
Huang Y., Anderson R. Phosphatidylglyceroylalkylamine, a novel phosphoglycolipid precursor in Deinococcus radiodurans. J. Bacteriol. 1991;173:457–462. PubMed PMC
Huang Y., Anderson R. Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. J. Biol. Chem. 1989;264:18667–18672. PubMed
Huang Y., Anderson R. Glucosyl diglyceride lipid structures in Deinococcus radiodurans. J. Bacteriol. 1995;177:2567–2571. PubMed PMC
Saint N., Lou K.L., Widmer C., Luckey M., Schirmer T., Rosenbusch J.P. Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization. J. Biol. Chem. 1996;271:20676–20680. PubMed
Singh P.R., Ceccarelli M., Lovelle M., Winterhalter M., Mahendran K.R. Antibiotic permeation across the OmpF channel: modulation of the affinity site in the presence of magnesium. J. Phys. Chem. B. 2012;116:4433–4438. PubMed
Ferrara L.G.M., Wallat G.D., Moynié L., Dhanasekar N.N., Aliouane S., Acosta-Gutiérrez S., et al. MOMP from Campylobacter jejuni is a trimer of 18-stranded β-barrel monomers with a Ca2+ ion bound at the constriction zone. J. Mol. Biol. 2016;428:4528–4543. PubMed PMC
Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. PubMed
Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Met. 2017;14:331–332. PubMed PMC
Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. PubMed PMC
Ludtke S.J., Baldwin P.R., Chiu W. Eman: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 1999;128:82–97. PubMed
Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. PubMed PMC
Scheres S.H. Relion: implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. PubMed PMC
Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Met. 2017;14:290–296. PubMed
Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 2004;D60:2126–2132. PubMed
Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019;75:861–877. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed