• This record comes from PubMed

The cryo-EM structure of the S-layer deinoxanthin-binding complex of Deinococcus radiodurans informs properties of its environmental interactions

. 2022 Jun ; 298 (6) : 102031. [epub] 20220513

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35577074
PubMed Central PMC9189128
DOI 10.1016/j.jbc.2022.102031
PII: S0021-9258(22)00471-9
Knihovny.cz E-resources

The radiation-resistant bacterium Deinococcus radiodurans is known as the world's toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies. Its main proteinaceous unit, the S-layer deinoxanthin-binding complex (SDBC), is a hetero-oligomeric assembly known to contribute to the resistance against environmental stress and have porin functional features; however, its precise structure is unknown. Here, we resolved the structure of the SDBC at ∼2.5 Å resolution by cryo-EM and assigned the sequence of its main subunit, the protein DR_2577. This structure is characterized by a pore region, a massive β-barrel organization, a stalk region consisting of a trimeric coiled coil, and a collar region at the base of the stalk. We show that each monomer binds three Cu ions and one Fe ion and retains one deinoxanthin molecule and two phosphoglycolipids, all exclusive to D. radiodurans. Finally, electrophysiological characterization of the SDBC shows that it exhibits transport properties with several amino acids. Taken together, these results highlight the SDBC as a robust structure displaying both protection and sieving functions that facilitates exchanges with the environment.

See more in PubMed

Bahl H., Scholz H., Bayan N., Chami M., Leblon G., Gulik-Krzywicki T., et al. Molecular biology of S-layers. FEMS Microbiol. Rev. 1997;20:47–98. PubMed

Messner P., Allmaier G., Schäffer C., Wugeditsch T., Lortal S., König H., et al. Biochemistry of S-layers. FEMS Microbiol. Rev. 1997;20:25–46. PubMed

Gentner N.E., Mitchel R.E. Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans. Radiat. Res. 1975;61:204–215. PubMed

Sleytr U.B., Sàra M. Bacterial and archaeal S-layer proteins: Structure–function relationship and their biotechnological applications. Trends Biotechnol. 1997;15:20–26. PubMed

Kumar J., Ghosh P., Kumar A. Ultraviolet-B radiation stress-induced toxicity and alterations in proteome of Deinococcus radiodurans. Microb. Physiol. 2021;31:1–15. PubMed

Baranova E., Fronzes R., Garcia-Pino A., Van Gerven N., Papapostolou D., Péhau-Arnaudet G., et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature. 2012;487:119–122. PubMed

Bharat T.A.M., Kureisaite-Ciziene D., Hardy G.G., Yu E.W., Devant J.M., Hagen W.J.H., et al. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2017;2:17059. PubMed PMC

Baumeister W., Barth M., Hegerl R., Guckenberger R., Hahn M., Saxton W.O. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 1986;187:241–250. PubMed

Müller D.J., Schoenenberger C.A., Schabert F., Engel A. Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. J. Struct. Biol. 1997;119:149–157. PubMed

Lister T.E., Pinhero P.J. In vivo atomic force microscopy of surface proteins on Deinococcus radiodurans. Langmuir. 2001;17:2624–2628.

Farci D., Kereïche S., Pangeni S., Haniewicz P., Bodrenko I.V., Ceccarelli M., et al. Structural analysis of the architecture and in situ localization of the main S-layer complex in Deinococcus radiodurans. Structure. 2021;29:1279–1285.e3. PubMed

Farci D., Bowler M.W., Kirkpatrick J., McSweeney S., Tramontano E., Piano D. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochim. Biophys. Acta. 2014;1838:1978–1984. PubMed

Farci D., Bowler M.W., Esposito F., McSweeney S., Tramontano E., Piano D. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans. Front. Microbiol. 2015;6:414. PubMed PMC

Farci D., Slavov C., Tramontano E., Piano D. The S-layer protein DR_2577 binds the carotenoid deinoxanthin and under desiccation conditions protect against UV-radiation in Deinococcus radiodurans. Front. Microbiol. 2016;7:155. PubMed PMC

Farci D., Slavov C., Piano D. Coexisting properties of thermostability and Ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans. Photochem. Photobiol. Sci. 2018;17:81–88. PubMed

Farci D., Guadalupi G., Bierła K., Lobinski R., Piano D. The role of iron and copper on the oligomerization dynamics of DR_2577, the main S-layer protein of Deinococcus radiodurans. Front. Microbiol. 2019;10:1450. PubMed PMC

Adamec F., Farci D., Bína D., Litvín R., Khan T., Fuciman M., et al. Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of. Deinococcus Radiodurans. Photochem. Photobiol. Sci. 2020;19:495–503. PubMed

Farci D., Aksoyoglu M.A., Farci S.F., Bafna J.A., Bodrenko I., Ceccarelli M., et al. Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features. J. Biol. Chem. 2020;295:4224–4236. PubMed PMC

Rothfuss H., Lara J.C., Schmid A.K., Lidstrom M.E. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology. 2006;152:2779–2787. PubMed

Handing K.B., Niedzialkowska E., Shabalin I.G., Kuhn M.L., Zheng H., Minor W. Characterizing metal-binding sites in proteins with X-ray crystallography. Nat. Protoc. 2018;13:1062–1090. PubMed PMC

Anderson R., Hansen K. Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J. Biol. Chem. 1985;260:12219–12223. PubMed

Huang Y., Anderson R. Phosphatidylglyceroylalkylamine, a novel phosphoglycolipid precursor in Deinococcus radiodurans. J. Bacteriol. 1991;173:457–462. PubMed PMC

Huang Y., Anderson R. Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. J. Biol. Chem. 1989;264:18667–18672. PubMed

Huang Y., Anderson R. Glucosyl diglyceride lipid structures in Deinococcus radiodurans. J. Bacteriol. 1995;177:2567–2571. PubMed PMC

Saint N., Lou K.L., Widmer C., Luckey M., Schirmer T., Rosenbusch J.P. Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization. J. Biol. Chem. 1996;271:20676–20680. PubMed

Singh P.R., Ceccarelli M., Lovelle M., Winterhalter M., Mahendran K.R. Antibiotic permeation across the OmpF channel: modulation of the affinity site in the presence of magnesium. J. Phys. Chem. B. 2012;116:4433–4438. PubMed

Ferrara L.G.M., Wallat G.D., Moynié L., Dhanasekar N.N., Aliouane S., Acosta-Gutiérrez S., et al. MOMP from Campylobacter jejuni is a trimer of 18-stranded β-barrel monomers with a Ca2+ ion bound at the constriction zone. J. Mol. Biol. 2016;428:4528–4543. PubMed PMC

Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. PubMed

Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Met. 2017;14:331–332. PubMed PMC

Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. PubMed PMC

Ludtke S.J., Baldwin P.R., Chiu W. Eman: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 1999;128:82–97. PubMed

Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. PubMed PMC

Scheres S.H. Relion: implementation of a bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. PubMed PMC

Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Met. 2017;14:290–296. PubMed

Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 2004;D60:2126–2132. PubMed

Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019;75:861–877. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...